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1. INTRODUCTION

This paper grew out of an attempt to survey the topic of vector-valued
approximation. Rather quickly we realized that this subject had been
considered in only a handful of papers, and that numerous questions
remained unresolved. Some we were able to answer to our satisfaction,
while others remain unanswered. We hope that this paper will further
stimulate work in this area.

Let X be a normed linear space and Y a subset of X. Numerous authors
mention four basic questions of qualitative approximation theory (see, e.g.,
Garkavi [9], de Boor [8], Light and Cheney [24]). These are the
questions of existence, characterization, uniqueness, and construction of
a best approximant to elements of X from Y. In this paper we concern our-
selves with the questions of characterization and uniqueness. Qur main
interest is in the uniqueness question. Existence will always hold since we
consider approximation from finite dimensional subspaces. Concerning
construction we have nothing to say, and in fact little seems to be known.

By vector-valued functions we mean

f(x) = (f] (.\'), bdd) .fm('\’))s Xe D,

where D is some set and each f;: D — R. In other words f: D - R™ We
essentially look at two clases of simple mixed norms on such functions.

These are
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and
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where p, g€ [ 1. 2] (with the usual understanding if p= > and/or ¢ = oC).
We are more explicit and accurate in subsequent sections. These are special
cases of

(L =0T
and
Il = ()] s

where || -7 is any norm on R” and ||} ¢ any norms on the “appropriate”
function spaces.

We look at || || 4., and |||l g, , for each p, g€ [1, ¢ ] and attempt to
answer the following question. Given a finite dimensional subspace U,
what are conditions on U such that to each f there exists a unique best
approximant from U? Towards this end we generally are forced to consider
the question of the characterization of best approximants. There are many
different cases depending on 4 and B, and whether p=1, 1<p<x,
p=x and g=1, | <g< oo, ¢=oc. Some of these are casily dealt with.
The remaining cases are dealt with in some detail. This is the reason for the
length of this paper. We also consider as special cases the problems of
Simultaneous Approximation and Tensor Product Approximation. By
Simultaneous Approximation we mean approximation from subspaces
where each of the approximating functions has the form

o{x)=(u(x), ..., u{x)),

ie, u,(x)=u(x)for each i=1, .., m. By Tensor Product Approximation we
mean approximation from subspaces which contain a basis of functions, all
of the whose components are identically zero except for one non-trivial
component.

In Section 2 we give a series of general results concerning characterizing
best approximations and uniqueness. These results are all known, but it is
well worth quickly reviewing them as they are relevent in our subsequent
analysis.

In Section 3 we present a quick review of some results on unicity spaces
in the C and L' norms, as these are the basic non-smooth, non-strictly
convex norms considered. Sections4-12 represent Part A and are
concerned with the A(p, g)-norm. In Sections 13--19 (Part B) we deal with
the B(p, ¢)-norm.
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As mentioned previously, we had originally intended to survey for our-
selves the topic of vector-valued approximation, but were surprised by the
lack of results to the found. Two major exceptions to this are the papers
by Zuhovitsky and Stechkin [36] and by Kroo [21] (see also the
references therein). The paper by Zuhovitsky and Stechkin essentially
covers the cases of the 4(xc, g) and B(oc, ¢)-norms, 1 < g < ., Sections 7
and 16. This paper is fairly well known in the former Soviet Union, but less
so in the west. The paper by Krod deals with many of the results found in
Section 14 on the B(1, g)-norm, | < g < oc. Some related and more specific
questions have been dealt with, for example, by Brannigan [3],
Garkavi [10], Kro6 [18], and Opfer [26]. Some corresponding results on
mixed-norm best approximation may be found in Cheney, McCabe, and
Phillips [6] and Watson [35].

2. GENERAL RESULTS

There are two basic approaches to characterization thcorems in the
problem of best approximation from linear subspaces. The first of these is
based on functional analytic methods. The other is, in spirit at least, a
more classical approach and is based on a “generalized perturbation
technique.” We quickly reviw these two approaches, starting with the
former.

Let X be a normed linear space with norm ||-||,. By X* we denote the
continuous dual of X with associated induced norm | -||,.. Let S(X*)
denote the unit ball in X*. We then have the following characterization of
best approximants from linear subspaces.

THEOREM 2.1.  Let U be a linear subspace of X and fe X\ U. Then u*e U
is a best approximant to f from U if and only if there exists an he X*
satisfying
(1) fhly.=1
(2) Mu)=0,all uel’
(3) A(f—u*)=1/f—u*|y.

The proof of this theorem is simple and may be found, for example, in
Singer [33. p. 18] (see also Buck [41}). The more “difficult” part of the
proof is a simple application of the Hahn-Banach Theorem and was
known to Banach, see, e.g.. [2, p. 57].

For specific examples, as we shall see, the difficuities encountered in
applying Theorem 2.1 are generally the identification of X* and the
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possible e X* which satisfy (1), (2), and (3). The latter problem is
considerably easier if, for example, X is smooth. That is, if to each fe X,
f #0, there exists a unique he X* satisfying ||hl| y.=1and A(f)=]f| s. In
this case the & of Theorem 2.1 is uniquely defined by (1) and (3), and as
such, is generally simpler to determine.

A strengthened form of Theorem 2.1 is available if U is of finite dimen-
sion. Before stating this strengthened form, we recall that y is an extreme
point of a convex set B if Ay, +{(1—4)y,=y for some Ae(0,1) and
¥y, v, € B implies that y, = y,=y. This next result is due to Singer [33,
p. 1707 and is a consequence of an elegant application of the Krein—-
Milman and Alaoglu Theorems.

THEOREM 2.2.  Let X be a normed linear space over the reals, and U an
n-dimensional subspace of X. Given fe X\U, we have that u* is a best
approximant to [ from U if and only if for some k. 1 <k <n+ 1, there exist
4;>0,i=1, .., k, and h,, extreme points of S(X*), i=1, .., k, such that

(a) Zf’: (A (u)=0, all ue U.
(b) A (f—u*)=|lf—u*lly, i=1, .,k

If X is smooth, then this result adds no new information to Theorem 2.1
since the #,’s are all then equal to the unique £ satisfying (1) and {3) of
Theorem 2.1.

The second general approach to characterization theorems is based
on the idea of directional derivatives for convex functions. The convex
function in this case is the norm. Given f, ge X, we define

t.(f g)= lim LA+ gl = S0y

m ; (2.1)

The functional 7, exists for any f, g € X. This follows from the fact that the
quantity

IS+ gl — 1L/ s
t

15 both non-decreasing and bounded below on (0, o). The two-sided limit
in (2.1) need not exist. It exists for every f, ge X, f#0, if and only if X is
smooth. In general z (f, g), /#0, is the supremum of A(g) as 4 ranges
over all norm one linear functionals in X* satisfying 4(f) = | f]l x, see, e.g.,
Kothe [15, p. 349]. The two-sided limit, if it exists, is called the Gateaux
derivative of f in the direction g. As such, we refer to t (f, g) as the one-
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sided Gateaux derivative {of / in the direction g). We have, see, eg.,
Pinkus [29, p. 3],

THEOREM 2.3.  Let U be a linear subspace of X and f € X\U. Then u*e U
is a best approximant to [ from U if and only if © (f—u*, u)=0 for all
uel.

As noted, this concept adds little for smooth spaces. Two classic
non-smooth spaces for which t, is well known are the following.

(a) Let D be a compact Hausdorff set and C(D) the space of
continuous real-valued functions defined on D with norm

1A 21_3?531?)( [/
Then for f, ge C(D), f#0,
T, (f g)=max [ g(x)sgn(f(x))],

where A= {x:|f(x) =/,

(b) Let D be a set, 2 a a-field of subsets of D, and v a positive
measure on X. By L'(D, X, v) we mean the usual space of real-valued
v-measurable functions f defined on D for which [/ is v-integrable, and

=] i1

For fe LY(D, X, v), we set
Z(f)={x:f(x)=0].

Z(f) is v-measurable. For f, ge L'(D, X, v), f#0, it follows that

o (fg)=] stsenfidve | glan

200
where
L, f(x)>0
sgn( f(x))=+<0, fx)=0
—1, f(x)<0.

Given a finite dimensional subspace U of X, is the best approximant to
S from U necessarily unique for all fe X? If U enjoys this property, we say
that U is a unicity space. As is both well known and very easily shown, if
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the normed linear space X is strictly convex, then U is a unicity space. In
general there is no other good criterion for determining when each fe X
has a unique best approximant from U. One theorem found in the
literature (see, e.g., Singer [33, p. 104], Holland and Sahney [12, p. 105])
1s:

THEOREM 2.4. Let U be a linear subspace of X. To each element of X
there exists at most one best upproximant from U if and only if there do not
exist [1, [re X and he X* satisfving

(1y fi—/felU' {0}
(2) Whlye=1
(3) huy=0, all uelU
(4) A7) =1l AU =108
It is our view that this theorem is essentially a tautology and provides

no insight into the problem of uniqueness. The proof of Theorem 2.4 comes
from a simple application of Theorem 2.1.

3. CHARACTERIZATION AND UNIQUENESS IN C AND L!

In this section we present a quick review of various facts needed in the
subsequent analysis. The material in (A) may be found in many of the
standard texts in approximation theory, see, e.g., Cheney [5], Singer [33].
The material of (B) may be found in Pinkus [29].

(A} Let D be a compact Hausdorff set and C(D) the space of continuous
real-valued functions defined on D with norm

I, = max [f(x)].

From Theorem 2.3 we have:
PROPOSITION 3.1. Let U be a linear subspace of C(D) and e C(D)\U.
Then u* e U is a best approximant to f from U if and only if
max u(x)sgn((f —u*)(x))=0 (3.1)

veEeA

Jor all ue U, where A= {x |(f—u*)(xX)|=|f—u*l,}

Inequality (3.1) is generally referred to as Kolmogorov’s criterion. If U
is finite dimensional, then as an application of Carathéodory’s Theorem to
(3.1), or more directly as a consequence of Theorem 2.2, we obtain the
classic characterization theorem on C(D).
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THEOREM 3.2. Let U be an n-dimensional subspace of C(D). Given
1'eC(D), we have that u* is a best approximant to [ from U if and only if
for some k, 1 <k <n+1, there exist points {x,}*_, = D, and real numbers

i=1
¢;#0, i=1, ..k, such that
(1) 3% c,ulx)=0, al uelU
(2) (sgne ) (f—u*)Nx))=f—u*l, , i=1, ..k

The finite dimensional unicity spaces in C(D) were characterized by
Haar [11].

THEOREM 3.3.  An n-dimensional subspace U of C(D) is a unicity space if’
and only if no ue U {0} has more than n — 1 distinct zeros on D.

Subspaces satisfying the above condition are called Haar spaces. One
often sees an equivalent definition of Haar spaces in terms of non-vanishing
of certain determinants. Haar spaces on intervals of R are called Chebysher
or T-systems. The condition of being a Haar space is rather demanding.
For n>1, Haar spaces do not live on domains not homeomorphic to
subsets of S! (the circle).

(B) Let D be a set, XL a o-field of subsets of D, and v a positive o-finite
measure defined on 2. Let LY{D, v)=L'(D, X, v) be as defined in Section 2.
From either Theorem 2.1 or 2.3 we have:

THEOREM 3.4. Let U be a linear subspace of L'(D,v) and fe L'(D,v).
Then u* is a best approximant to [ from U if and only if

<| Ju| dv (
YL um)

|78
2
—

j usgn(f —u*)dv
D

for all ueU.

(At times, as we shall see, it will actually be more convenient to work
with the characterization in Theorem 2.1 rather than (3.2).)

With regards to the question of unicity spaces in L'(D,v), there is a
fundamental difference depending on whether v has atoms or does not. We
only consider the case where v is non-atomic. The following result for
D=0, 1] and Lebesgue measure is duc to Krein [16]. This general form
was proved by Phelps [27], see also Moroney [25].

THEOREM 3.5. Let v be a non-atomic positive measure. No finite dimen-
sional subspace U of L'(D, v) is a unicity space for L'(D, v).

In what follows, U is always assumed to be of finite dimension. If we
restrict ourselves only to the space of continuous functions, rather than all
L' functions with this same norm, then it may well be that there are unicity
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spaces. Towards this end, we let K denote a compact subset of R satisfying
K=int K, and p any non-atomic, positive finite measure on K with the
property that every real-valued /e C(K) is y-measurable, and such that if

1= 1/ duix) =0

for fe C(K), then =0, ie., ||- ||, is truly a norm on C(K). For notational
ease we denote the set of such measures by .o/, and we let C, (K, u) denote
the linear space C(K) equipped with norm |-|,. C,(K, u) is a normed
linear space, but it is not complete.

That unicity spaces for C,(K, i) exist is well known from Jackson’s
Theorem [14] from 1921, which says that for K=[0,1] and du=dx,
Lebesgue measure, the algebraic polynomials of any fixed degree are
unicity spaces in C, ([0, 1], dx). Two characterizations of unicity spaces in
C (K, p) are known. The first 1s due to Cheney and Wulbert [7], the
second to Strauss [34].

THEOREM 3.6. U is a unicity space for C (K, u) if and only if there does
not exist an he L™ (K, p) and a u* e U, u* #0, for which

() hx) =1, all xeK
(2) _fK hudu=0, all ue U
(3) hiu*|eC(K).

THEOREM 3.7. U is a unicity space for C (K, p) if and only if the zero
function is not a best L'(K, p)-approximant from U to any ge U* g#0,
where

U*={g:ge C(K), |g|=lul for some ue U}.

It has been noted that the various necessary and sufficient conditions
delineated for U to be a unicity space are u dependent. That is, I/ may be
a unicity space for C, (K, ) for some measure u, and not a unicity space
for other measures u. As such, it is natural to ask for necessary and
sufficient conditions on U implying that it is a unicity set for C, (K, u) for
all “nice” measures p. This problem has been considered in Krod [19] and
Pinkus [28].

We explain the results obtained. For each ue U, u#0, the (relatively)
open set K'\Z(u) is the union of a possibly infinite, but necessarily
countable number of open disjoint connected subsets of K, i.e., K\Z(u)=
(Ji_, 4,, where the A4, are open, disjoint, and connected. For convenience

i=1
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we also introduce the following notation. [ K\Z(u«)] denotes the number of
open connected disjoint components of XK'\ Z(u), and for each uwe U,

Ulwy=1{v:velU,v=0ac on Z(u)},

where the a.e. (almost everywhere) is with respect to Lebesgue measure.
We say that U satisfies Property A if to each wel, w#0, with
K Z(u)y=\J/_, 4,, as above, and to each choice of g;e { -1, 1}, i=1, .. r,
there exists a ve U(u), v#0, satisfying ¢,v020 on A4, i=1,.,r. We can
also state Property A in two other equivalent forms. Namely, U satisfies
Property A if to each ge U*, g#0, there exists a we U, w+#0, satisfying
u=0 ae on Z(g) and ug>0. Alternatively, U satisfies Property A if to

each we U, u#0, and he L”*(K) with

(1y lhx)=1all xekK
(2) hlule C(K)

there exists a ve U, v #0, satisfying hv 2 0.

The following result was proven with restrictions in Krod [19] and
Pinkus [287], and in this form in Kroo [20]. Schmidt [32] later proved a
somewhat more general result.

THEOREM 3.8. U is a unicity space for C (K, p) for all pe.of if and only
if U satisfies Property A.

This result naturally raises the question of which subspaces satisfy
Property A. We know of two necessary conditions implied by Property A.
To explain one of these conditions, we say that U decomposes if there exist
non-trivial subspaces ¥ and W of U such that U= V@ W, ie, U=V + W
and VA W=0, such that (K Z{(v))n(K\Z(w))=& for all veV and
we W. In other words, there exist disjoint subsets B and C of K such that
every function in V vanishes identically off B, while every function of W
vanishes identically off C. Two necessary conditions for U to satisfy
Property A were given in Pinkus and Wajnryb [30].

THEOREM 3.9. [If U satisfies Property A, then

(1) [K\Z(u)] <dim Ulu), for all ue U.
(2) IfZIU)=,.. Z(u), and [K\Z(U)] 2 2, then U decomposes.

If K< R, then based on these results a full characterization of those U
satisfying Property A may be given. From (2) of Theorem 3.9, it suffices
to state this result for K= [a, b] under the assumption that Z(U)n
(a, by=&. This next result was proved by Pinkus [28, 29] and improved
by Li[22].
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THEOREM 3.10. Letr U be a finite-dimensional subspace of Cla, b].
Assume Z(U)Yn(a, b) = &. Then the following are equivalent.

(1) U satisfies Property A.
(2) [[a b1 Z(u)]<dim Ulu) for all ue U.

(3) U is a WT-svstem, and if ue U vanishes on [¢,d], a<c<d<b,
then there exists a ve U such that v=u on [a, ¢}, and v=0 on [¢, b].

(The subspace U 1s a WT (weak Chebyshev) system on [a, b] if no ue U
has more than dim U/ — 1 sign changes on [«, #].) For K< RY d>2, such
a characterization is not yet known.

PART A
4. THE A(p, 4)-NORM: GENERAL RESULTS

The next 8 sections contain uniqueness and characterization results with
regards to the A( p, g)-norm

” - pigN Lip
o= X (] 1000 din) ) (1)

i=1

where p, g€ [1, o] (with the usual understanding if p = ov and/or ¢ = o),
and generalizations thereof. The A(p, ¢)-norms are, in a sense, concep-
tually simpler than the B(p, g)-norms. They can and sometimes should be
considered as spaces of real-valued, rather than vector-valued functions.
This is done by setting f=/f, on D,, for i=1,..,m (where here each
D;= D, but we think of them as different). That is, f is a function defined
on 7, D,, where f|,=/f,. The A(p, g)-norm of f is then a particular
mixed (p, ¢)-norm defined on /. (The B(p, g)-norm might be thought of in
this way, but it is less useful.) Before dealing with specific (p, ¢), some
general remarks are in order.

Let /: Sx T— R. Assume that for each fixed re T, f(- 1) is an element
of the normed linear space on S with norm

IS0 s,

and | f(- t)]|5. as a function of ¢, is an element of a normed linear space
on T. It is not necessarily true that the quantity

I Ol (4.2)

is a norm. It is a norm if T is a lattice and |- |, is a monotone norm. That
is, if for any x, v in the normed linear space on 7 satisfying 0 < x{1) < y(r)
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for all ¢, we necessarily have x| ;<[ v|l;, then (4.2) is a norm. Thus the
A{p, g);norm of (4.1) (and the B(p, g}-norm as given in Section 1) are
indeed norms. Because of the simple nature of the A(p, g)-norm, its dual
and the extreme points thereof are easily identified. In fact, let us assume
that we are given

flx)=(f1(x), .y frn(X)), xeD,

normed linear spaces S,, with norms -lls, on f,, and a Banach lattice T
with norm |[-| ; over R™. Let 4 be the normed linear space with associated
norm [i-|| , given by

(P R (P21 S e (4.3)
Then it is easily seen that the dual space A* is given by
A*={h:h=(h,, .. h,) heS*
with norm

I e = IR T e

(where |- g»is the norm on S§* and |-|,. the norm on 7*), and

mn

h(f)= 3. 4, ().

i=1

Thus for A(p, ¢) as above, we have
A*(p.q)=A(p' q")

fl<p<x, 1<g<ow (where I/)p+1/p'=1/g+ 1/q"=1). The case g=
is excluded because of the nature of (L”)". In the more general case of 4
and A*, we have:

PROPOSITION 4.1. The element h=(h,, .., h,) is an extreme point of
S(A*) if and only if

(a) each h, is an extreme point of the ball ||h,| S.I.S(S',* )
(b) {lIh g7, is an extreme point of S(T*).

Proof. (=) Assume h is an extreme point of S(4*).

(a) If h, is not an extreme point of the ball i|/1,|55,-5(§5") for some
ie [1,...m}, then there exist h}, h?e S¥, h! # h? satislying

(A8 o= lhil e k=1,2
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and
hi=(h!+h3)2
Set
he = (hh, o h5). k=1,2,
where /] =h’=h, j#i, and h}, h} are as above. It follows that h' #h?,
h=(h'+h?)2

and [h'| ;. =|h?|,.=1. Thus h is not an extreme point of S(A*).

(b) Assume {||A;ll¢+7_, is not an extreme point of S(T*). Set
c;=Jhllgs i=1,..m Then by assumption, there exist ¢!, ¢’e S(T*),
¢! #¢2, such that

c={c' +¢c?)/2.
Set
*h.
pe=S o mk=1,2
C;
if ¢,>0.If ¢,=0, then ¢/ = —c¢7 and we let h} € ¥ satisfy ||h}|| »=|c!| and
h2= —h!. Thus

A% o= lck], i=1,...mk=12

Since T is a Banach lattice on R™ with respect to the usual elementwise
order, it follows that 7* has this same property. Thus

L2 e po= 1 1e*] 7o = N{IAT gt 72l e
Therefore h* e S(A*), k=1, 2. As is easily checked
h=(h'+h?)2,
and h' #h% Thus h is not an extreme point of S(T*).

(<) Assume that (a) and (b) hold, and h is not an extreme point of
S(A*). Thus there exist h', h>e S(4*) h! #h?, such that

h=(h' +h?)2.

Without loss of generality, we may assume that [(h] .= {h'| .=
[h?|| ;»= 1. Set ¢, = ||A, | s and k= Ilhf."flsl., i=1,..m, k=1,2. Since

h,=(h!+h?)/2, i=1,..,m,
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we have
;< (el + ey, i=1, .., m.
From the definition of ¢;, ¢¥ and the respective norms, we also have
el = le! )l pe = €37 = 1.

Set

L={i:c,=(c!+¢;)2}
and

M=1{i:c,<(c!+¢7)2).

From the definition of the ¢* and ¢,, it follows that if ie M, then ¢}, ¢} > 0.
For each ie M, let u!, uj e [0, 1] satisfy

ci=(ulel+piel)2
ForielL, let u!=pl=1. Set
ch= (el s ), k=12

Thus

c=(c) +c¢)/2.

Since T* is a Banach lattice on R™ with respect to the usual elementwise
order,

ek 7o < lle*i 7o = 1.

From (b), ¢ is an extremal point of S(7*). Therefore

ol a2
c=c,=c,.
Thus for /e L, we necessarily have
(" = Cl = (':.2_

i I3

If ie M, we have ¢!, ¢2>0, and the above equality is only possible for all

possible p¥, k=1,2,if ¢,=0. Thatis, M {i:c,=0}.
For /e L. we have

hy=(h] +h?)/2
and [(h,/lg = Ilh!lls = 1Al 5. Thus from (a), h,=h =h}.
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For ie M, we have h,=0, and h} = —h| #0. Therefore ¢' =c¢? = b where
b,=c;2z0forielL, and b,>c¢;=0for ie M. Set
1_ b, ie L
YGTVb. ieM

By our assumption on 7 (and hence on T*),

|, .= IIb],.= 1.

Furthermore

c=(b+d)2

and b#d if M # . This contradicts (b). As such M = ¢J, and therefore

i=1

i i I *

ey 1,

contradicting our hypothesis that h is not an extreme point for S(4*). |

The simple identification of the dual space of 4(p, ¢), and the extremal
points thereof allows us to easily characterize best approximants. In
addition, as a consequence of the above results, or via a more direct route,
it is also possible to determine t7 (f, g), based on knowledge of t> and 7 .
We have, see, e.g., loffe and Levin [13, p. 417,

tlfg) =L (A7 e g0

Finally, if | <p<oc and 1 <g< o, then A(p, g) 1s a strictly convex
normed linear space. As such, given a finite dimensional subspace of
A(p, q) we will always have uniqueness of the best approximant. We deal
only with the remaining cases.

5. Al g), 1 <g<x

As in many of the cases to be considered, we will try to concentrate on
the essential features of the problem. As such, let Y, be a normed linear
space with norm |-[[,., i=1,..,m. For the moment we assume that each
Y, is smooth. For each fe Y, f#0, we let h, e Y * denote the unique linear
functional satisfying (Al ,»=1, and &, (f)= [,

By Y we mean the normed linear space

Y={=(fi..ofu): fieY, i=1 ., m
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with norm

m

I y=3 1filly.-

=1
If Y* is the dual space to Y, then
Y*=th=(h,, .. h,) heY*i=1 . m}

with norm

[hilye = max [[A;]l,»

r=1,...m

Note that

m "

hif)=3 A ()<Y LA IR,

i=1 i=1

s( s ) ( max iy = My h] e

i=1

IffeY, f#0, and he Y* satisfies
thily.=1, h(f) = ifl

then
(1y if f,#0, then h,=h,

2y if f,=0, then h,e Y* may be arbitrarily chosen satisfying
S‘IIIH )'J‘< l

As a general result, we have

THEOREM S5.1.  Let U be « finite dimensional subspace of Y. Then u* is a
best approximant to f from U if and only if

Z h/, u,‘(uf) g Z H%” ¥; (51)
Gty ot # 0! Yoty owr =0}
Jor all we U, or, equivalently, for i such that f;—u¥ =0 there exist h;e YX,

Al o< 1, satisfying

> hy () + Y hi(u)=0 (5.2)

VAR st ut=0!

Jor allue U,

640 73 1-3
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Proof. Assume u* is a best approximant to f from U, f#u* From
Theorem 2.1 there exists an he Y* satisfying
(1) fhi,.=1
(2) h(w)=0, for allue U
(3) h{f—u*)=|f—u*|,.

Conditions (1) and (3) imply that A,=h, . if f;—u*# 0. Equation (5.2)
is just a restatement of (2) where ||h|,. =1 implies that (4] ,.< 1.
If (5.2) holds, then for every ue U,

Z h/, —ut (ur)

i wr£0)

:\ Z hi(u,)
Tiz

gy ut =0)

< Z flae | ¥ WA yrs Z N, | ¥

ity u’ =0} Lt - =0}

Thus (5.1) holds.
If (5.1) holds, then for any ue U,

m

[f=u*ly= Y Wi—ufly= L by elfi-uf)

i=1 Vot W #0)

= Z h/} u,'(f‘i_ui)+ Z h/}—— u,‘(ui_ui*)
Gt wr#0) lict u'#0}

< Z “/l - ll,‘“ Y, ”hl, u “ Y,'+ Z ”ul - ui*H Y,
Vg w0 {itfi w'=0)

= Z I fi—ul y, + Z u; — fill Y,
icfi- u*#0) lits u*=0}

= lf—uf,.

Thus u* is a best approximant of f from U. |

Remark. The fact that (5.2) implies (5.1) is trivial, as we have just seen.
We did not directly prove that (5.1) implies (5.2), but rather proved it
indirectly via the best approximation property. It may be directly proven
that (5.1) implies (5.2) from general principles. This is a special case of
what is sometimes called the abstract L-problem in normed linear spaces,
see, e.g., Krein and Nudel'man [17, Chap. [X].

The above characterization result helps in determining when U is a
unicity space.
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PROPOSITION 5.2.  Assume there exsts a u*e UN{0}, and ¢,e §{ —1,1},
i=1, .., m, such that

Y ehsudl< Y )y, (5.3)
iru! #00 Lou =0}
for all we U. Then U is not a unicity space.
Remark. We could also replace (5.3) by
Yo oehsu)+ Y hi(u)=0 (5.4)
a0} Viut =0

for all ue U and some h;e Y* satisfying |4, ,»< 1, for those i for which
u¥=0.

Proof. Let fi=¢,uf,i=1,...m Forae(—1,1)
fi—au¥=(e,—a)uk

Since 1 = ¢} > |af, 1t is easily seen that [, —auX* #0 if and only if u}* #0,
and if f,—au*#0, then h, ,.+=¢ h,. Thus (5.3) may be rewritten as

Z h/, 111,‘(“;’) S Z “ul H Y,
Vi, au'#0)] Gicfy at=0)
From (5.1), this implies that au* is a best approximant to f from U. Thus
U is not a unicity space. |

For the converse result we impose an additional condition on the ¥,. We
assume that each of the norms ||-||, is strictly convex. Recall that in a
strictly convex normed linear space, if

I/ +gll=1[is1l+1 gl

then /=0, g=0, or f=cg for some ¢>0.

THEOREM 5.3. Let Y, be smooth and strictly convex normed linear spaces
Jor each i =1, ..., m. The finite dimensional subspace U of Y Is a unicity space
if and only if there does not exist au* e U {0} and ;e { —1,1},i=1,..,m,
such that (5.3) holds for all ue U.

Proof. (=) This is the content of the previous proposition.
(<) Assume U is not a unicity space. Thus there exists an fe ¥ and
u*e U {0} such that +u* are best approximants to f from U. Now,

20y WSt uFily, + 1= uXlly,
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for i=1, ..., m. Furthermore,
20fly= M +u*, +|f—u*],.
Thus

20/l = 14wy + L= ulX

for each i=1, .., m. Since each Y, is strictly convex, this equality implies
either u* =0 or f,=c,u¥, for some |¢;| =1, for each i Since 0 is a best
approximant to f from U,

‘ S htuy)

Litfi#0)

< Z iy,
h=0)

for all ue U. Now, if u* #0, then f,# 0, and from the above,
h,=¢ h,x,

where ¢, =sgn ¢,. If f,=0, then of course u*=0. Thus

’ Y o e (u)+ Y o)l <Y Hudly,

Yiow#0) ituk =0, fi#0]

for all we U, which immediately implies (since /|4, ,, = 1), that

\ Z &; hu,’(“i)

iu#0)

for all we U. That is, (5.3) holds. |

< Z el Y,

[FEETh 3]
i =0]

Let us consider some simple examples where (5.3) is, in a sense, easily
checked. .

ExaMmpPLE 1. dim U=1. In this case (5.3) reduces to the existence of
g;el{—1,1}, i=1,.., m, such that

S ellutly=0.

; -
i #0)

Thus, under the assumptions of Theorem 5.3, U=span{u*} is a unicity
space if and only if there do not exist ¢;e { — 1, 1} satisfying

n

2 & lluXlly,=0.

i=1
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ExampLE 2. If for each ue U\{0} there do nor exist ge{—1,1},
i=1, .., m, such that

m

2 e lluly,=0,

i=1

then U is necessarily a unicity space.

ExaMPLE 3. Simultaneous Approximation. Let ¥,= ¥, i=1, .., m, and

U={u:u=(y, ., u)ueclc }7}.

Thus dim U=dim . We assume that ¥ is smooth and strictly convex.
Then U is a unicity space if and only if m is odd. For in this case of
simultaneous approximation, if u*e U\ {0}, then u* =u*#0 for every i,
and (5.3) reduces to

m

Y eih,.(u)=0

i=

for all we U. That is,

h"t(ll) (i 8,> =0

i=1

for all ue U. If m is even, let ¢,=(—1), i=1, .., m, and the above always
holds. If m is odd,

> & #0
i=1
and

h(u)#£0

for some ue U, e.g., u=u*.

ExamMPLE 4. “Tensor” Product. Let U=V @ W, where for all veV,
v, =0, i=/+1,..,m, while for all we W, w,=0, i=1,..,! (1<l<m).
Then, as is easily checked, U is a unicity space if and only if both V' and
W are unicity spaces.

Looking back at the previous theorem and the method of proof thereof,
it follows that we have proved this next result.
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COROLLARY 54. If fe Y is such that f,#u, for any ie{l,..,m}, and
any uwe U, then f has a unique best approximant from U.

Inequality (5.3) is not a condition which is in general easy to check. As
such, we take specific choices for the Y, i=1, .., m, and examine them in
further detail.

Let K be a compact subset of R’ K=int K. Let u, be non-negative
o-finite measures on K. We set Y, = L*(K, pu,), where l <¢q, < o, i=1, .. m
Thus each Y, is smooth and strictly convex. We have that fe LYK, u,) if

1= ([ e an )

exists and is finite. We can restate Theorem 5.3 as follows: U is a unicity
space if and only if there does -not exist a u*e U'{0}, and g, {—1, 1},
i=1, .., m, such that

< Y,

ticut =0}

! o luX() Usgn(uX(x)) u, (x)

L al TR ap: (%)

liiut 0]

for all wue U.

This is certainly a condition which is not easy to verify and depends on
the specific {u;}. We look for a condition which is essentially {u,}
independent. To simplify matters we restrict ourselves to measures ;e .o/
{see Section 3). Under these assumptions, we have:

Y m

THEOREM 5.5. U is a unicity space for all choices of {u,}7_ €. if and
only if for eachu*e Un{0} and e,e { =1, 1}, i=1, .., m, there exists ave U
satisfving

(@) v,=0ifur=0

(b) guX(x)v,(x)=0 (Lebesgue)ae.on K, i=1,.. . m (55)
(c) & uX(x)v,(x)>0forsome je{l,.,m}ona .

set of positive Lebesgue measure.

Proof. (<) Assume that given any u*e U\{0} and ge{—1,1},
=1, .., m, there exists a ve U satisfying (5.5). Assume U is not a unicity
space for some measures {y,}7 , €./. There then exists a u* € U\ {0} and
g;e{—1,1}, i=1, .., m, such that

* 4 —1
‘ 5 SrJKIM"(X)l sgn(u;“(u))u.»(x)d#im< Sl

iy
(iiuf #£01 “u.'*“Z: "
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for all weU. Let ve U satisfy (5.5) with respect to this u* and these

] Y

16,17, From (a)

coluX(x)|” sgn(uX(x)) vi(x)
El -
< (75 A

Siiut#0) K

dy; (x)=0.

From (b) and (c), it follows that the above quantity is strictly positive. This
contradiction implies that U is a unicity space.
(=) Assume there exists a u*e U\ {0} and ¢,e { —1,1},i=1,...m, so
that no ve U, v#0, satisfies (5.5). That is, in particular, if ve U satisfies
(a’) v,=01fu*=0
(b’) guXx)v,(x)=z0paeonkK, i=1,.m
(where du is Lebegue measure), then u*v, =0 p ae. for each i=1, .., m.
Set

U={uiuel,u;=0if u*=0}

The set U, is a linear subspace of U of dimension k, 1<k <n (since
u*el))
Let

T 1 k
U, =span{u', .., u*}.

Choose u* ™!, .., u" so that

U=span{u', .,u* 0" . u'}

and set
U,=spanfu**' ., u"}.

Thus U=U,®U,. Let @={i:u*=0}, and P={1,..m}\@. Note that
the u**', ., u" are “linearly independent over Q.” That is, if u e U, satisfies
u;=0 for all ie Q, then u=0.
For ie Q, let h,e L™ (K), satisfy
(i) A, (x) =1, forall xe K
(ii)  §xA(x) u,(x)du(x)=0 for all ue U.
Such 75, exist since U is of finite dimension, and by our various

assumptions.
Let

h* = (h¥, .., hY),

where for ie Q, h*=h,, and for ie P, h* =¢, ju¥(x)|* ' sgn(uX(x}).
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Set
W={w:w=h*.uuelU},

where by w=h* .u, we mean that w;(x)=h*(x)u,(x), i=1,.., m. Note
that W is a linear subspace of dimension at most ».

We claim that W contains no non-negative nontrivial function. Assume
that we W satisfies w, 20 u ae., i=1,..,m Now w,:h,."‘u,:h,""(v,l +v,-2),
where v'eU,, j=1,2 For ieQ, v! =0 and h¥* =h,. Thus

T .2
w,=h;v7 20

pae. for ie Q. But from (ii), we see that &, v} =0 u ae., and using (i), we
have v] =0 u ae. for such i. By our definition of U,, this implies that
v’ =0. Thus

=h*.v'"

Let us rename v' as v. Since ve I'' we have that ¢,=0forall i€ Q, ie., (a')
holds. Now AX*r,; =0 for i€ P translates into

g luF )™ sgn(uX(x) v (x) 20

u a.e., which is equivalent to (b’). If w is non-negative and non-trivial then
ufv,>0 for some jeP on some set of positive measure. But this
contradicts our assumption.

Since W contains no non-negative non-trivial function (and dim W < o),
there exist measures {x,}”_ | in .o/ such that

”

Z J w, (x)du, (x)=0

i=1"K

for all we W (see, e.g., Pinkus [29, p. 61]). In fact we could choose the ;
to be of the form o, (x) dx, where-g,e€ C(K), 6,> 0. Thus

”

Y J h¥(x)u, (x)dy, (x}=0

i=1

for all we U. That is,

Y o] urG) sgn(ur(x) u, (x) da, (x)

ie P

+ ZJ i (x)u, (x)dy, (x)=0
ieQ K

for all ue U.
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Set ji,=c,u;,i=1,..,m, where for ie P

qi 1
C,=<fkiu:“(x)l"'du,-) ,

and for ie Q
¢ = (p, (K

Thus for each ue U,

wrOl” sgn(uX(x))ui (x)
Z SIJ- | g ({#i(-Y)
ieP K (i
h(:
+ 3 j 1Y) () di () =0,
ieQ K ¢
For ie P,
tar Vg,
uxiy =<[ lu,*(xn"'dﬁ,(x))
K
Ggi Tigy
=<f luX ()" c; dp, (-Y))
"
(i gy
=i ”"'(f ol di, (x))
X
___[.l (l‘qn(._lﬂq.
=¢;.
For ie Q,
h X)
[ 28 i s )( ( Tl
K |
A simple calculation shows that
‘h \\
el S
Substituting we obtain
wX() sgn(uX(x))u, (x)
‘ T S - G ST EZAC Y P R PR
litw® #0) K llae; “q, Litur=0)

for all we U.
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Thus U is not a unicity space with respect to the measures
[T S |

Theorem 5.5 is of course vacuous in the case where m= 1. For if m=1,
then every finite dimensional subspace is a unicity space since the norm is
strictly convex. Thus we always assume m 2 2. If U is a tensor product of
the form

L’!= (J,'l @ o @ Um‘

where for each ue U’ we have u,=0 for all i # J, then it is easily seen that
U is a unicity space. For in this case,

min |f—ulf= Y min ||f;—u,ll,,

we l/ i) e O
where U= {u,:ue U"}. Since each U is a finite dimensional subspace of a
strictly convex normed linear space Y,, the problem

min [1f,—u, ],

w et
has a unique solution u* and u* = (uf, ..., u}) is the unique solution to our
original minimization problem.

The question naturally arises as to which other subspaces U satisfy the
conditions of Theorem 5.5. We conjecture that there are no others. For
n=1, this is easily seen. For assume U=span{u*}, and u*#0, u* #0,
i#j Let ¢¢,= —1, and ¢, €{—1,1} for all other k. Then (5.5) cannot
hold. We can prove this conjecture for » > 2 under somewhat restrictive
assumptions.

THEOREM 5.6. Assume m =2, and U is a finite dimensional subspace for
which
(i) w,e(K),i=1,.,m alluel.
(1) If u,#0, then W(Z(u;))=0 and [ K" Z(u))]<M for some M
independent of we U and i.
Then U satisfies (5.5) if and only if
U': UVI @ @ Um

as above,

Remark. Recall that Z(u;)= {x:u;(x)=0}, u is Lebesgue measure,
and [K.Z(u,)] denotes the number of connected components in the set
K\Z(u,).
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Proof. One direction is obvious. We therefore assume that U satisfies
(5.5) of Theorem 5.5, and (i) and (i1), and prove that it is then necessarily
a tensor product as above.

Forue U, set P,u=u,, i=1,.., m. That is, P, is the projection onto the
“ith” component. Let

n;=dim P, U=dim span{u,:ue U}

and n=dim U.

For any subspace U, n <Y, n,. Our claim is equivalent to proving that
n=3" n; There is also a different equivalent form of our claim. For each
iell,.,m}, set

Qiu= (1, ., Uy Uy gy Uy,)

Let m,=dim Q, U. Now n,+m;=2n. Our claim is equivalent to proving
that n,+m,=n foreach i=1, ., m

Assume 1, +m,>n for some i€ {1, .., m}. For ease of exposition, assume
that i=1. For eachue U, let i =Q ,u=(u,, ... u,,).

Since n, +m, >n, we have n, + m, =n+ [, 121, and there exist

u' o ul vt e Wit wm
a basis for U such that

(1Y uy, o, oft! is a basis for P, U.

(2) o', ., o, Wt . W™ is a basis for 0, U.
3y ¥'=0, j=I1+1,.,n,.
(4) wi=0,/=[+1,...m,.

)
s U]

Using Proposition 4.13 of Pinkus [29] and the assumptions (i) and (ii),
there exists a

/ "
* _ ! %,/ * o
Pl—u1+>:a;"1+ Z brey

j=2 j=t+1
such that if pe P, U and pfp >0, then p=u, p} for some a, = 0. Let
!
w¥=u'+ ) a*u/,
=2

and

W=span{w* w't! W}

1}
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From (2), dim W=m, —{+ 1. From Proposition 4.13 of Pinkus [29] and
the assumptions (i) and (ii), there exists a

such thatif pe W, p,p*>0,i=2,...,m,and p,=0if p*=0, then p=a,p*,
o520,

Set
! "y ] niy )
pr=u'+ ) a*w+ Y bXv4+ Y c*wl
j=2 j=1+1 1=+

Note that P,p*=p¥, and Q,p*=p* Since U satisfies (5.5) (by
assumption), there exists a z*e U {0} such that

(a} zX¥=0i1if p*=0.
(b} z¥(xX)pF(x)=0, for all xe K.
(by) zX¥(x)pX(x)<O, for all xeK, and j=2,...m

(c) [xz¥prdu—3",(xz¥p¥du>0 for u Lebesgue measure.
Let
", my

!
=3 aqu'+ Y bHv+ Y w

j=1 j=14+1 J=1+1

From {b,) (ie., =¥ p¥ =0), we have
t¥=u, pi a,=20.
Thus a,=a,af, j=1,.,/(af =1), and b,=a,b¥, j=I+1,.., n,. Thus
" my
z*:a1<w*+ Y h,*v’)+ Y o oew
jodtt j=1+1

and therefore

niy
*=qW¥+ Y ,WeW
j=1+1

From (a) and (b,),

Pe, X =ay(WEH T, W),
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Since the {W, w'* ', .., %™} are linearly independent, we get o, = x,. But

2y 2022, Thus a;, =a, =0, which implies that ¢,=0, j=1,...{; b,=0,
j=Il+1,.,n;and ¢,=0, j=/+1, .., m,. That is, z* = 0. This contradicts
(c). Thus n, +m;=n. ||

6. A(p, 1), 1 <p<c

Let D, be a set, 2, a o-field of subsets of D,, and v, a positive o-finite
measure defined on X, i=1, .., m. For each i, we let L'(D,, v;,) (=L'(v,))
denote the Banach space of v-measurable functions f; defined on D, for
which {f;| is v-integrable over D,, with norm

1fil=] V@l dvix), i=t.m

For 1 < p<oc, let Y, denote the Banach space
Yp= {f: (.fl* (L) .fm) :kft € Ll(Dia \',—), l: Ia ] ’n}

with norm

ni lip
wmn=(ZHﬁMMO :

i=1

We herein assume, for convenience only, that D,= D, i=1, .., m. The dual
space Y.} of Y, may be identified with

Y¥={h=(h,, .. h,): heL"(D,v) i=1,..,m)

with norm

m ) Lip'
\mm;=<Z\MJLmJ ,

F=1
where 1/p+ 1/p’= 1. From the fact that

”

W)=Y b ()= 3 | [0k (x)db, ()
=1 i=1

DI VI FEr 1% P

i=1

m Lip s m 1ip’
s(Z\umng (zwmmﬂmj

F= i=1

64071 1-4
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we have that if fe ¥

pe

f#0. and he Y satisfies [/h| =1 and
h(f) = ] ,,.

then equality holds in both above inequalities. As such,

(1Ma}  h;(x)=c;sgn(/f; (x)), v, ae on N(f;)
(b) Hhin[,’lv,):(l
2y =Sl g /Ify) 7

foreachi=1,..,m
Characterization of best approximants is casily obtained from an
application of Theorem 2.1.

THEOREM 6.1. Assume U is a finite dimensional subspace of Y,.
Then u* is a best approximant-to f from U if and only if there exist
hie L™ (Z(f,—u}), v,) satisfving |||, ., <1 and

”m

0=7 w,~u*n,.../[f el ) () v ()
YN W

i=1

+f h(x)u; (x)dv, (.\')} (6.1)
20 u)

for all ue U. Or, equivalently to (6.1), we have

m

S i u i | (sE(fi=uF ) () v, ()
=1 YA

m

<Y W—ur gy [ ol ds, () (62)

i=1 26 ul)

for all ue U.

In what follows, we assume that each v, is non-atomic (as well as
satisfying the previous assumptions). The fact that the measures are non-
atomic allows us to assume in (6.1) that |k, (x)| =1 for all xe Z{f,—uX).
This is a consesequence of the Liapounoff Theorem (see Liapounoff [237),
which we use in the proof of this generalization of Theorem 3.5,

ProPOSITION 6.2. [If each v, is non-atomic (and as above), i=1, ..., m,
then no finite dimensional subspace U of Y, is a unicity space.
Proof. Choose h*e L™ (v,) to satisfy

(1) |h*(x) =1, all xeD
(2) [ph¥x)u; (x)dv,(x)=0alluel, and all i=1, .., m
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Such h}* necessarily exist (as a consequence of the Liapounoff Theorem)
since the v, are non-atomic and

PU={u,uel}

is finite dimensional.
Let u*e U\ [0} be arbitrarily chosen. Set

SH )= hx(x) luX(x)l, i=1,..,m,

and f*=(f* .., /.¥). Note that N(f*)= N(u¥), and sgn(f*(x))=h*(x)
on N(f*) for each i=1, .., m. Thus,

m

PRI [(W) (sgn(£*(x))) , (x) dv, (x)

i=1

+'( Ju, (x)dv, (r)} (6.3)
P

”n

=3 If*N 0 ,J-)lz,-*(_\')u,v(.\‘)d\-,. (x)

i=1

=0.

From Proposition 6.1, we have that 0 is a best approximant to f from U.

For xe(—1,1) and each ie{l,..,m}, it follows since |h*(x)|=1
for all x, that N(f* —auX)=N(f*)=N(u}F), and sgn({f* —auX)(x)) =
sgn( f,*(x)) = h*(x) for all xe N(f;*). Furthermore,

L =, = [ sl — 2wy dv ()

'

=1/* g,y — 2 ( h*(x) uX(x)dv, (x)

Y ™)

= Uy — 2 | P U dv, ()
D

= Hf:*“ Lvive

Thus |f]] y, = If —xu* v, and axu* is also a best approximant to f* from U.
U is not a unicity space. |i

We now make some further additional assumptions. We replace D by K
where K< RY compact, K=int K, as in Section3. For each uel,
u,e C(K) and y, (replacing v,} is in /. We also let ('Y, denote the
restriction of ¥, to f=(f,..., f,} such that f,e C(K), i=1,...,m. As a
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generalization of Theorem 3.6, we have the following characterization of
finite dimensional unicity spaces for CY, which, it should be noted, is
independent of pe (1, o).

THEOREM 6.3.  The finite dimensional subspace U of CY, is a unicity
space for CY, if and only if there do not exist h*e L7 (K, ), i=1,..,m, a

m

u*e UM {0}, and numbers {A¥}7 | such that

(1) 1a¥x) =1 all xeK, i=1, .., m
(2) h¥x)|u¥(x)eCK), i=1,..,m.
3y 7 A jk XY u, (XY du, (x)=0 for all ue U, where 4* 20, and
A¥>0 0 JuX| Ly > 0
(4) [xhX¥(x)uX(x)du,(x)=0,i=1,..,m.
Proof. (=) Assume there exist ¥, u¥ and A¥, i=1, .., m, satisfying (1),

(2), (3), and (4).
IF a1, > 0, set

/:*l‘(p 1)
: h¥(x) Ju(x).

Ji(x)

”u:‘*HU“,,)

Note that f,e C(K) and || fil,,,=4*""” ". If u¥*=0 and i}*=0, set
f,=0.If u¥*=0and A* >0, let f, be any function in C(K) satisfying

g __ 3%k 1)
Il 1y = 257

and sgn f;(x)=hX*(x) on N(f)).
Thus, for every ue U

Zuf,-uzl.u',)[[ (sgn £, (x)) w, (¥) i, (x) + | h:*(x)u,-(.wdu,(x»]
N PAUS]

i=1

= i AX (,h,-*(x) u; (x) du,; (x)

i=1 VK

=0
by (3). Thus 0 is a best approximant to f from U.
Let « satisfy

*Li(p- 1)

o] < min :isuch that u* #0
I ;

i
“u:*H L)

and consider f—au*. If u¥ =0, then

”_f;-—du,*“l_uu'): Hfi”Ll(u,)=;‘;kmp b,
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If u¥+#0, then

Jklip- 1)

L00) — aw ¥ (x)] = | T ¥ (x) |u X (x)] — au*(x)
Hui ”I,‘(u,)
JRLp—1)

= |u}(x)| — ah}(x) u*(x).
”ui ” JRIVTA

From (4) it now easily follows that
1=t 1y = Wl g = AX7
Thus
IE— iy, = 1]y,

and xu* is also a best approximant to f from U. U is not a unicity space.
(<=) Assume U is not a unicity space. There therefore exists an fe CY,
and u*e U\ {0} such that +u* are best approximants to f from U. Now

211 (OIS Ii+uP) )+ 1(f, —uX)x)
for all xe K, and i=1, .., m, which implies that
20L0 gy S W+ uX gy + 1= 02 g
fori=1, .., m, and
2Ufly, < UE+ w4+ I —u, .
Since
Iy, = I+ u*), = T —u*),
we must have equality throughout. Thus
211, =i + w3+ i = uP Hx) (6.4)
for all xe K and i=1, ..., m, and
1l gy = UL uX gy = W= 0 (6.5)

for i=1,..,m. From (64) we have |f;(x}{={uX(x)| for all xe K and
i=1,.. m Therefore Z(fY= Z(u¥), i=1, .., m

Since 0 is a best approximant to f from U, there exist h*e L " (K, p,),
i=1, .., m, satisfying

,h,-*(l‘” = 19 -YEK. {= l, cy P71,
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ie. (1), with AX(x)=sgn f,(x) on N(/,) and

m

0= Al fauly | A0 w03 dts ()

i=1

for all we U. Setting A* = || f:|I ], mu =1, ..., m, we get that (3) holds. Note
that A*>0, and if 24*¥=0, then f, —() and since Z(f;)< Z(u*), we have
u¥=0.Thus A*>0if [u*|,,,>0.

Again, since Z(f;) € Z(u¥), we have that hX*(x)|u¥*(x)| € C(K),
i=1,..,m, ie., (2) holds.

Finally, from (6.5),

“f[ ” AT = “f/ -‘—- ul* H 2.

=J (S u*)0)] d,(x)
—J- AX() it u¥)(x) du; (x)

=1Ll gt ‘ h¥(x)uX(x)du; (x).
i
Thus

Jﬂ h¥(xYuX(x)du, (x)=0, i=1,..,m,

R
and (4) holds. |

Let us consider some examples.

ExaMpPLE 1. dim U=1. Let U=spanju*}, u*=(uf, ., uk). From
Theorem 6.3, U is nor a unicity space if and only i there exist
h*e L™ (K, u,), i=1, .., m, satisfying

(') h*x) =1 xekK i=1,.,m
(2') hX(x)|uXx)eCK)i=1,...m
(4") _[Kh,?“(x) u¥(x)du,(x)=0,i=1,..,m

For each ie {1,..,m}, (1), (2), and (4') are totally equivalent to the fact
that if u*+#0, then span{u*} is not a unicity space for continuous
functions with norm L'(K, u,) (see Theorem 3.6). Thus U is a unicity space
for CY, if and only if there exists an ie {1, .., m} such that u*+#0, and
span{u*} is a unicity space for continuous functions with norm L'(X, u,).
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ExaMPLE 2. Simultaneous Approximation. Assume py,=pu, i=1,..,m,
and for eachwe U, u;=u, i=1, .., m. Set

U={u:u=(u,.,u)e U}

From Theorem 6.3, U is not a_unicity space if and only if there exist
hie L7 (K, p), i=1,.,m, au*eU\{0}, and i¥>0, i=1, .., m, satisfying
(17 (h*(x) =1, xeK, i=1, ., m
2"y hX(x)|ju*(xN e C(K),i=1, ., m
(3") o (X7 AXhX ) ulx)du(x)=0all ue U

(4") [xhF(x)u*(x)du(x)=0, i=1, .., m

In the previous example we considered the case n=1. Let us now assume
that n>>2 and m>=2. Then no U is a unicity space in the problem of
simultaneous approximation in CY,. _

A proof goes as follows. Since # > 2, there exists a u* € U such that

j w*(x) du(x).
X

Set h¥(x)=1, i=1,..,m—1, and h¥(x)= —1, all xe K. Thus (1), (2"),
and (4”) hold. The A* >0 are simply chosen so that (3”) holds.

ExaMPLE 3. Tensor Product. If
U=U'® ---® U",

where ue U’ implies u; =0 for all j#i, then

" Lip
min If — u ,,-p=(>: [min Hf,-—u,ll,_u,,,,]”> .
uel’ P=1 wie L

Thus U is a unicity space for CY, if and only if each U’ is a unicity space
for continuous functions with norm L'(K, u,), i=1, .., m.

One major question which remains unanswered is that of characterizing
the U which are unicity spaces for CY, for all u,, ..., u,, in .o/.

For n=1, ie, U=span{u*}, it follows by the above that U has this
property if and only if for some ie {l,..,m}, u*#0 and span{u}} is a
unicity space for continuous functions with norm L'(K, y,) for all g, in .&/.
This in turn (see Pinkus [28]) is equivalent to the fact that the support of
u* 1s a connected set. In the case of tensor products, as in Example 3, U
is a unicity space for CY, for all g, .., u,, in .o/ if and only if each of the
U’ have this same property.
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We do not know the answer in general. Certain different phenomena
seem to occur, the most obvious of which is exemplified by this next
example. Consider

U=span{(1, x), (x, 1}}

on K=[—1,1]. Uis a unicity space for CY, for all measures in .«/. This
follows from the fact that for each ue U\ {0}, the support of cither u, or
u, i1s a connected interval. As such there do not exist A, h, satsfying
(1), (2), and (4) for both u, and u,.

7. A(c,q), 1 <g<

Let Y; be a normed linear space with norm |-|[,, i=1,..,m. By ¥ we
denote the normed linear space

Y=[=(f1,.. /w):fieY, i=1, ., m}

with norm
£y = max (£,

If Y* is the dual space to Y, then
Y*=th=(h,..h,) heY¥i=1,.,6 m}

with norm

2]

Il ye =3 U0y
i=1
We first consider characterizations of best approximants. This is most
easily stated under the assumption that each Y, is smooth. For now we
therefore make this assumption. For cach feY, f#0, we let he Y'*
denote the unique linear functional satisfying ||A,]| ,»=1, and A,(f)=1.
From

m

h(f)= 3 A (SIS Y ISy, Uiy
i=1 =1

m

<( max £l ( Y Il ) S LI

i=1
we have that if fe Y, f#0, and he Y* satisfies

Ihily.e=1, h(f)=|jf],
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then
(a) h,=d, h; with d,>0.
(b) d;=0unless i¢gJ=1j:|fly=Ifl}
(c) Yiesldl=1

A characterization theorem is as follows.

THEOREM 7.1. Let U be an n-dimensional subspace of Y. For fe Y, we
have that w* e U is a best approximant to { from U if and only if there exist
Jrs e Jo €J, where

J={lfi—ully,=IIf—u*(,},
and positive numbers i, ..., i, with 1 <k <min{n+ 1, m}, such that
Z ;.[h/“ u:(u,-')—:O

for all ue U.

In the consideration of the uniqueness property. the smoothness plays no
role. We therefore drop this assumption.
Set

PU={u u=(uy,...u,elU}

Thus 0<dim P,U<n for each i=1,..,m Necessary and sufficient
conditions for the unicity of U are easily stated and proved if the norms on
the Y, are strictly convex for each i. We divide the result into two parts in
order to emphasize that in one direction this condition is not necessary
(and so that we need not repeat it in Section 11). In what follows we
assume that each Y, is a space of dimension =n.

PROPOSITION 7.2.  The n-dimensional subspace U of .Y is not a unicity
space for Y if dim P, U <n for some i=1, .., m.

Proof. Assume dim P, U <n. Then there exists a u*e U\ {0} such that
u¥=0.

Let f,e Y,, f,#0, be such that 0 is a best approximant to f; from P, U.
Such an f; exists since dim Y, > n. Assume, without loss of generality, that
1£ify,= 1. Set
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Then 0 is a best approximant to f from Y since
T=fly=/illy, <Ifi—wlly, < If—ully
for every ue U. Furthermore, since u* =0,
[f—au*|,=f],
for every « such that
Ll le*]ly, < 1, j=1, .., m
Thus U is not a unicity space. |
THEOREM 7.3.  Assume that each Y, is a strictly convex normed linear

space, i=1,...,m. Then U is a'unicity space if and only if dim P, U=n
(=dim U) for each i=1, ..., m.

Proof. From the previous proposition it remains to prove that if U is
not a unicity space, then dim P, U <n for some /.

Assume fe VY, |, =1, and u*e U" {0} is such that +u* are best
approximants to f from Y.

Thus
T=fl,=Iftu*|,.
Let
ted=1{j 11y, =18y}
Then
U=Ufilly, <3Uf+ufly, + 51—y,
<zl +urfy+5if—u*),
=1
Thus

L=lflly, =1 fi=uf = N+ ul]
Since the norm Y, is strictly convex, it follows that
fi—ulF=fi+ur

Thus u* =0. But u* #0. Therefore dim P, U<n. |
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Remark. Theorem 7.3 should be considered together with Theorem 16.2.
It is really a special case (although not explicitly stated) of a result of
Zuhovitsky and Stechkin [36].

Remark. Note that if Y;=Y, and Y is a strictly convex normed linear
space, then in the problem of simultaneous approximation U is always a
unicity space. On the other hand, in the problem of tensor product
approximation, U is never a unicity space.

8 Alp, ) I<p<w

When dealing with the L”-norm we always restrict ourselves to the
space of continuous functions. As such we assume, as in Section 3, that D
is a compact Hausdorff set and C(D) the space of continuous real-valued
functions defined on D with the usual uniform norm. We let Y = A(p, o)
denote the normed linear space

Y={=(/i, . [.): fie C(D)}

with norm

]y = ( y llﬁH’;) ’

i=1
Thus the dual space Y* is given by

Y*={pu={(s o ply)  p;€C¥(D), i=1, ., m}

with norm

m , 1ip’
uun,.=(z nu,wm) ,

i=1

where I/p+ 1/p’=1, and [, ;,. denotes the total variation of the measure
ti-
Applying results of Sections 2, 3, and 4 (Theorems 2.2 and 3.2,
and Proposition 4.1), we obtain the following characterization of best
approximants.

THEOREM 8.1. Let U bhe an n-dimensional subspace of Y. Then u* is
a best approximant to f from U if and only if for some k, 1 <k<n+1,
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Ly Goy in D, positive numbers 4, j=1, ..k, and
e;el =1L 1L j=1 .k i=1, .., m, suh that

(ry ¥ KA —uEl Yo u(x)=0allueU

i=1 =1

(2) & ((f:_ul* )(xl/)) = “fl—' “,*H ) }: 1’ e ka i= 1’ ey L

there exist points {x/}7 %

The problem of characterizing unicity spaces in this case seems to be a
difficult one. One partial result is the following.

PROPOSITION 8.2. If U is not a unicity space for Y, then there exists a
uw*e UN{0} and {x;}7, € D, such that

uX(x;)=0, i=1,.,m (8.1

Proof. Since U is not a unicity space, there exists an fe Y and

u*c U4 {0} such that both +u* are best approximants to f from U. For
each i=1, ... m,

2000 sWfi—uXl, + 1+ ukl, (8.2)

Thus
2y < —u¥)y + 1T +u*) . (8.3)
Since +u* are best approximants, we must have equality in (8.3). The

strict convexity of the /7'-norm (1 < p < o0) implies that we have equality
in (8.2) for all i, and

Ifi—uXl o =clfiturl., i=1..m,
for some ¢ 2 0. Since |[f—u*||, = |f+u*||, we have ¢=1. Thus

Ll =1fi =Xl =S +utll, (8.4)

for each i.
If x;eD is such that |f;(x;))=]/.ll, . then from (8.4) we must have
ur(x)=0. I

If (8.1) does not hold for any ue U\ {0}, then U is necessarily a unicity
space for Y. The converse does not in general hold. A partial result in the
converse direction is the following much more demanding condition. (Note
that the strict convexity of /7' is not used here.) We recall that for ue C(D),
Z(u) is its zero set. By | Z(u)| we denote the number of zeros of u in D.
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ProposITION 8.3. If there exists a w* e U\{0} such that
|Z(u¥) =zdim P, U
Jor each i=1, ... m, then U is not a unicity space for Y.

Proof. If u¥ =0, then let f, be any function in C(D) for which the zero
function is a best uniform approximant to f; from P; U.

Assume u* #0. By assumption P, U is not a Haar space. However, more
is true. By a standard construction, due to Achiezer [ 1, p. 68] in his proof
of the Haar Theorem, there exists an f;e C(D) such that au* is a best
approximant to f; from P, U for each || < 1.

It now follows that au* is a best approximant to f={(f,, ..., f,,) from U
for each [x| < 1. Thus U is not a unicity space for ¥. |

ExaMmpLE 1. dim U=1. By putting together Propositions 8.2 and 8.3,
we get that U =span{u*} is a unicity space for Y if and only if there do
not exist points {x,}” , in D such that u*(x;)=0,i=1, .., m.

i=1

Remark. Tt is interesting to juxtapose this result with the analogous
results for p=1 and p=cc. For p=1, we prove in Proposition 10.3 that
U=span{u*} is a unicity space if and only if there do not exist {x,}7_ | in
D and g;e { —1, 1} such that 37 ¢, u*(x,)=0. For p= o, see Section 12,
we have that U is a unicity space if and only if ¢} has no zero in D for each
i=1,..,m. That is, there does not exist an /e {1,..,m} and x;e D such

that u*(x,)=0.

ExaMmpLE 2. Tensor Product. If U=U'@® --- @ U™, then it follows by
definition that U is a unicity space for Y if and only if each U’ is a Haar
space {unicity space for C(D)).

ExampLE 3. Simultaneous Approximation. Let U be an n-dimensional
subspace of C(D) and

U={u:iu=(u ..,u),ucl}

We have the following result. (Note the demand that n> 1.)

PROPOSITION 8.4. Let n>1 (and m>1). Then for U and U as above, U
is not a unicity space for Y.

Proof. Since n 32, there exists a u*e U\{0} which vanishes at some
x*e D. There exists an f € C(D) satisfying f(x*)=|f.. =1, and such that
au* is a best approximant to f from span{u*} for all |a] <! (normalize u*
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1 m

if necessary). Choose any numbers {a,}? | satisfying la,| =1, i=1, .., m,
and 37, |a;|” 'sgna;=0 (m=2). Thus

" ”

Y, la fl% ' (sgna,) ulx *) > la,|” 'sgna,= (8.5)

i=1 P=1
for all ue U. Furthermore
(sgnaa, fIx*Y=la,fl. , i=1, .., m (8.6)

From (8.5), (8.6), and Theorem 8.1, it follows that 0 is a best approximant
to

fo=t(a,f ..a,f)
from U. (Here k=1, x/=x*, ¢,=sgna,.) Now for each ie [, .., m}
la f —u*(l.. = la] If = @*/a)l . =lat=la.f| .
since 1/|a,| < 1. Thus U is not a unicity space. |

Remark. From Proposition 84 we see that the converse of
Proposition 8.3 is not valid.

9. A(1, 1) (B(1,1))

A much simpler case is given by

"

Hf” AL = Z ”/,HI»

i=1

where f=(f,, .., /..), and
L= 1S dv ), =1,
D;

where the D, and v, satisfy the conditions in Section 6. Contained in this
case is the B(1, 1)-norm. This is a simpler case because we should consider
this norm as a standard L'-norm having nothing to do with vector-valued
functions. It is as if we are given a function f which is f; on D,, for
i=1,..,m, and we take its L'-norm. Since we are dealing with the usual
L'-norm, the theory of L'-approximation as expounded upon in Pinkus
[29] is applicable.

Assuming that each v, is a non-atomic positive measure, =1, .., m, it
follows from Theorem 3.5 that no finite dimensional subspace U is a unicity
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space. If, in addition, we have that D, = K < R“ is compact, K =int X, and
each y, 15 in .o/, then if U is a finite dimensional subspace such that
u;€ C(K) for each i=1, ..., m, then conditions for U to be a unicity space
with respect to the f satisfying f,e C(K), i=1,..,m, are given in
Theorems 3.6 and 3.7. Similarly U is a unicity space in the above problem
for every choice of measures u,, .., u,, in o/ if and only if U satisfies
Property A, properly translated into this context. Using Theorem 3.9(2),
we see that this means that U must be of the form

L’V:U1® @Um’

ie., a tensor product, and each U’ satisfies Property A.

There are some problems which remain interesting despite the fact that
this is a special case of a well studied problem. It is natural, for example,
to consider the case where D, =K and v;=pu for all /=1, ., m. What are
then the conditions on U (as in the above problems) so that it is a unicity
space for every pe.o/? We have no answer at present, except in the
interesting case of Simultaneous Approximation. That is, where in addition
u;,=u for each i=1, .., m, and ue U. Here the conditions of Theorem 3.6
may be stated as follows.

There do nor exist h,e L™ (K, ), i=1,..,m, and u*e U" {0} for which

(1) lh(x)]=1forall xekK, i=1,..,m
(2) h|lu*eCK),i=1 ..m
(3) (& (Z7 h)udu=0 for all we U.

i=1
If m is even, there obviously do exist such ; and u*. Just take 4,=(— 1},
i=1,...,m, and let u* be arbitrarily chosen. Thus in the problem of

Simultaneous Approximation, U is never a unicity space for any pue.of if
m even. For m odd, the situation is not as simple. If

U={uru=(u, ., u)yel}

is not a unicity space, then neither is U. The converse does not seem to be
necessarily true. But U is a unicity space for a/l p € .o/ in the above problem
if and only if U is a unicity space for «/l ue.o/. We state this formally.

PROPOSITION 9.1.  Let U and U be as above, of odd dimension. Then U is
a unicity space in the above problem for all ye .7 if and only if U is a unicity
space for C,(K, u) for all ue o, ie., satisfies Property A.

Proof. We need only prove that if U is a unicity space for all pe .o,
then so is U. U satisfies Property A. That is, given any ve U\ {0} and
[K\;Z(u)] =U%_, 4,, and given any ¢,e { — 1, 1}, j=1, .., r, there exists a
ve U {0} satisfying
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(a) v=0ae. on Z(u)
(b) ¢ v=0o0n 4, for all j

Now assume that U is not a unicity space for some u* €.«/. Then there
exist h,e L*(K, u*), i=1, .., m, and u*e U\ {0} such that

(1) hix)l=1forall xekK, i=1,...m
(2) A, |u* e C(K)
3y [k (Z7  h)yudu*=0for all e U.

i=1

From (1), (2), and since m is odd, it follows that on each component A4;
of K"\ Z(u*), the function 7" | h, is a non-zero constant. Let ¢; denote its
sign. By assumption there exists a ve U\ {0} such that

(a) v=0 ae on Z(u*)

(b) &uv=0o0n 4, all j
Thus

f ( y h,-) vdp* > 0.
X

i=1

This contradiction to (3) proves the proposition. |

10. A(1, )

We assume that D is a compact Hausdorff set and C({D) the space of
continuous real-valued functions defined on D with the usual uniform
norm. We let Y = A(1, oc) denote the normed linear space

Y={f= (/1 fu): i€ CD)}

with norm

Ifly= 1fil

i=1
Thus the dual space Y* is given by
Y*={u=(uy, ... gn) ;€ C*¥(D),i=1,..,m}
with norm

Il ye = max Jull7,.
i=1,...m
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Similiar arguments to those used in obtaining Theorem 8.1 lead to this
next theorem.

THeOREM 10.1. Let U be an n-dimensional subspace of Y. Then u* is
a best approximant to f from U if and only if for some k, 1 <k<n+1,

there exist points {x|}7_%_ | in D, positive numbers i, j=1,.. k, and

e, e{—=11}, j=1, .,k i=1,..,m, such that
(1) Sk Ae,u(x))=0alluelU

(2) e ((fi—u)x)=1fi—uXl,, j=1, . kii=1..m

The uniqueness problem is not a simple one, and the results we have are
partial. Proposition 8.3 holds in this setting since the proof thereof did not
use the strict convexity of the norm. One other partial result is a
consequence of this characterization.

ProposiTiON 10.2. If U is not a unicity space for Y, then there exist
fx, )™ eD, g;el—1,1% i=1,.,m, and a u*e U\ {0} such that
! Si=1 ¢ )

i

S e ut(x)=0.

i=1

Proof. Assume U is not a unicity space. Let fe Y and assume 0 and

u*e U\ {0} are best approximants to f from U. Let {x/}7  %_ {4}%_ |,

and {e,}7 ,%_, be as in Therem 10.1. Thus
e filxD =11\ .. j=1, . kii=1.,m,
and it also easily follows that
ey (fi=u )= Ifi—u¥l s =l wkii=1 om,
Thus
ey u(x)=11ill. = Ilfi—uXl.

for each j=1, .,k and i=1, .., m. Since

YLl = =i —ut = - ur)

i=1 i=1

we have

Y e ur(x))=0. 1

i=1

640 73.1-5
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If for each ue U\{0} we cannot find x,e D, i=1,..,m,and ¢, | — 1,1}
such that

Z e u;(x,)=0,

i=1

then U is a unicity space for Y. In general the converse is not valid.
However, the converse is valid if dim U = 1.

ExampLE 1. dimU=1.

ProposITION 10.3. If U=spaniu*}, ie, dim U= 1, then U is a unicity

1

space if and only if there do not exist points {x. " in D, and e;e { —1, 1},
i=1,.. m, such that
e

Y e uX(x,)=0. (10.1)

i=1

Proof. One direction is contained in Proposition 10.2. Assume x, and
¢;, as above, exist satisfying (10.1). Choose a constant ¢>0 such that
¢>3ull,,i=1,.., m Set

Fi(x) = ¢, [e— ek (x) — ¥ (x,)| 1

It follows by inspection that
Ifill, =c=g/1i(x;). (10.2)

Using Theorem 10.1, Egs.(10.1) and (10.2) imply that 0 is a best
approximant to f from U.

Since ¢ >3 luX||, , we also have &, ((f;—u¥*)}(x)) =0 for all xe D. Now,
for any xe D,

[(fi—uX)x) = e ((fi—uX)x))
=c—luX(x)=—uX(x) —euF(x)
<c-—gu¥(x;)
=& ((fi—ur)(x,)
= (fi—u)x).
Thus
Ifi—uXl, =& ((fi—uX)x)). (10.3)
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It now follows from (10.1) that u* is also a best approximant to f from

U1

ExaMpLE 2. Tensor Product. If U=U'@® --- @ U™, then it follows by
definition that U is a unicity space for Y if and only if each U’ is a Haar
space (unicity space for C(D)).

ExampLE 3. Simultaneous Approximation. Let I be an n-dimensional
subspace of C(D), and

U={u=(u,..u):uel}

We have the following simple result.

PROPOSITION 10.4.  For U and U as above, U is not a unicity space for Y
if m is even or U is not a Haar spuace.

Proof. Assume m is even. If n =1, we can apply Proposition 10.3. Let
X,=x be any point in D, and ¢,=(—1), i=1,..,m Then 3> ¢ =0 and
(10.1) holds.

Assume n > 2. Then there exists a u*e U\ {0} which vanishes at some
point of D. Thus span{u*} is not a Haar space in C(D). Let fe C(D) be
such that 0 and u* are best approximants to f from span{u*}. Set

f=(f, —/ fos =1

Since 0 and u* are best approximants to f from span{u*},
If—w*lly=1flly=m|fll,.

For any ue U,
If—uly=3 (=D —ul,.

i=1

Now
Wf—ul, +l=F—ul, 22071, ,
and since mt is even, we obtain
f—ulyzm|f].

for any ue U. Thus 0, u* are best approximants to f from U.
If U is not a Haar space, we apply Proposition 8.3. |
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The converse of Proposition 10.4 is not valid, at least in the case n=1.
That is, it may be that m is odd and U is a Haar space, and yet U is, or
is not a unicity space. This follows from Proposition 10.3. For n=1, a
necessary and sufficient condition is given by the existence of points
fx, 17 ,in D, and g;€ { —1, 1} such that

"

Y g u*(x,)=0, (10.4)

i=1
where U =span{u*}. Now U=span{u*}) is a Haar space of dimension 1
if and only if v* does not vanish on its domain of definition. This condition
{and m odd) is insufficient to determine whether (10.4) will or will not
hold.

Proposition 10.4 should be contrasted with Proposition §.4. It was rather
surprising to us that we were unable to prove a result as strong as
Proposition 8.4 in this weaker setting.

11. A(oc, 1)

We let Y= A(oc, 1) denote the Banach space
Y= {f: (/l » "'nf;n) /16 Ll(Di’ v,), i= 1, ooy "’I}

with norm
£, = max (£l = max [ If0)ldv, (x),
i=1,...m D,

i=1,...m
where the D, and v, satisfy the conditions of Section 6. The dual space Y*
may be identified with

Y*=th=(h,, .. h,): hel (D, v)i=1, ., m}

with norm

m

Ihllye= 3 Al

i=1
For convenience we assume that D=K <R is compact, K =int K, and
v,=p,ed.

THEOREM 11.1. Let U be an n-dimensional subspace of Y. Then u* is a
best approximant to f from U if and only if there exist k, 1<k<
min{m, n + 1}, distinct j,, ..., jo€J, where

J= {1 fi—ulll = 1If—u*]fy ],
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positive numbers A, .., Ay, and h; € L™ (K, u,), satisfying
(1) |h(x)=1,all xeK, i=1, ..k

(2) fahy, (X —ub)x) du, = [lf,, w¥l L i=1, .,k
(3) XF_ Akt (xX)u, (x)dy; (x)=0allue U.

In the consideration of the unicity property we restrict ourselves to
continuous functions, see, e.g., Section 6, and let C'Y denote the restriction
of Ytof=(f,..[,) with f,e C(K), i=1, .., m. Without this restriction we
easily obtain an analogue of Proposition 6.2. Two simple necessary (but
not sufficient) conditions for unicity are contained in this next proposition.

PROPOSITION 11.2.  Let U be an n-dimensional subspace of CY. Set

PU={uu=(u, .., u,)eU}

If, for some i€ {l,..m}, P,U is not a unicity space for C,(K, u;} of
dimension n, then U is not a unicity space for CY.

Proof. If dim P, U<n for some ie{l,..,m}, then we appeal to
Proposition 7.2. Assume P; U is not a unicity space for C (K, y,) for some
ie{l,.,m}. Let f,e C(K), normalized so that [{f,|, =1, be such that
+uXe P, U\{0} are best approximants to f; from P, U in the L'(K, u;)
norm. Let f=(f,,.., f,) where f,=0 for j#i Then for all uel,
M—uli, 2l fi—wll, 2/, =1 For & small, such that le| lu*||, <1,
je{l, ..,mN\{i}, and |¢| <1, we obtain |f—eu*|, =] f,—eu}|,=1. Thus
U is not a unicity space. |

ExampLE 1. dim U= 1. Let U=span{u*}. In this case the converse of
Proposition 11.2 is valid. That is, if for each ie {1,..,m}, u*+#0, and
span{uX} is a unicity space for C,(K, ), then Uis a umc1ty space. To see
this, assume U is not a unicity space. Let fe CY be such that +u* are best
approximants of f. Let ie {1, ..., m} be such that | f;||, ={fl|,. Then it is
easily checked that

170 =i — o ®l,

for all |z| < 1. This in turn implies that

ILf:0 =mﬂin I fi—ouX|,.

Thus +u¥* are best approximants to f, from span{u*}!, which is a
contradiction.
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ExampLE 2. Tensor Product. From Proposition 11.2 (s > 2), U cannot
be a unicity space.

ExampLE 3. Simultaneous Approximation. We assume that u,=pu,
i=1,...m, Uis an n-dimensional subspace of C(K), and

U={a=(u, ., u)y:uel}.

PROPOSITION 11.3. For U and U as above, and n,m=2, U is not a
unicity space for CY.

Proof.  Let

‘A ldu=c¢>0.

SR

Since n = 2, there exists a u*e (7{0} satisfying (lu*]|, <¢, u*|, <1, and

.ﬂ w* du=0.

YA

Set f=(f,,.... [,,), where f,=1, f>=—1, and f,=0, i=3 (m=2). Thus
Ifly=¢. ForuelU

if—ullyZmax{|f,—ul,, | f>—ul}
:max{ 1A —ully, If +ull } 2 Al =c

Let xe[—1,1]. For ie {1, 2}, since JJu*||, <1,

1=l = O+ (=10 ) du= [ Vdu=c
)

"
For i =3,
Il fi—aw*| = flau*|, < c

Thus zu* are best approximants to f from U for ali ae[—1,1]. §

12, A(oo, o) (B(oo, =)

As in Section 8, D is a compact Hausdorff set and C(D) the space of
continuous real-valued functions defined on D with the usual uniform
norm. We let Y = A(oc, o) denote the normed linear space

Y: {f: (Af]a "'v.fm) IIEC(D)}
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with norm

Ifly= max [, = max [f,(x)].
i=1,..m i:“lé”j)’ m

Contained in this case is the B(oc, o )-norm. This is a simpler case because
this can and should be reinterpreted as a space of real-valued rather than
vector-valued functions. As such it follows that U is a unicity space if and
only if it is a Haar space, in the above sense. This simply translates as
follows: U is a unicity space for Y if and only if for each ue U [0}, the
sum over i in {1, .., m} of the numbers of zeros of u, is at most dim U — 1.
It therefore follows that if U is a tensor product space, it is not a unicity
space, and that in the case of simultaneous approximation with m > 2 and
dim U =2, U is not a unicity space.

PART B

13. THE B( p, g)-NORM: GENERAL RESULTS

The B(p, g)-norm is defined by

m Piq Lip
€l 5.0 = (jh ( DINZ (x)l") dv(x)> ) (13.1)
i=1

where f=(f,.., f.), p.gell, o] (with the usual meaning if p=0
and/or g=oc). If p=gq, the A(p, q) and B(p, q) norms are identical. As
such we will not consider this case. For 1 < p, g < o, the B(p, g)-norm is
strictly convex and every finite dimensional subspace is therefore a unicity
space. This leaves 6 general cases for consideration.

The general form of the dual space is similar to that in the A(p, g) case.
For 1 <p<o, 1 <g< o, we have B¥(p,q)=B(p', q'), where 1/p+ 1/p’ =
1/g + 1/g'=1. That is, we may identify the dual of B(p, q) as vectors

h - (h| LIRRRL] hm)’

with norm

m NP lip
uhng.pf.(,,,=(jn(z s (.x-n“) dv(x)) (132)

i=1

with the usual undestanding if p'=oc and/or ¢’ = 0. In these cases, it is
also possible to determine the extreme points of the unit ball of the dual
space of B(p, q), and if needed, we will do so.
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In the above paragraph, we did not mention the case where p = oc. This
is a more difficult problem, but the determination of the dual and the iden-
tification of the extreme points of the unit ball of the dual is a special case
of a result obtained by Singer, see, e.g., {33, 11.1.4]. For p= o we always
consider D as a compact Hausdorfl set and restrict ourselves to f;e C(D)
(rather than f;e€ L™ (D)). The dual of B(ac, ¢) (under the above assumptions)
may be identified with

lu = (Aul EIRERE] um)*

where each y, e C*(D) (i.e., regular Borel measures). To find the norm of y,
we set, for any Borel set B in D,

”m lig'
l\u(B)\lq»=<Z |u,(B)|4’) .

i=1

The norm on u is given by

] Trig) = Sup Z HII(D/)qu

j=1

where the supremum is taken over all finite partitions of D into pairwise
disjoint Borel sets {D;}7_,. The vector u operates on f in the simple form

moo

wh= Y | S du ().

i=1

The extreme points of the unit ball of the dual space are the functionals of
the form

WE = (s e 5,

where pu*=a} o, for some a*eR, x*e D (where J. . represents point
evaluation (Dirac-Delta measure) at x*), and (af, .., a¥) is an extreme
point of the unit ball in /7.

It is also possible to give a formula for %7 ¢(f, g). If Y=/7, and
X=L"D,v) for 1 < p<co, while X=C(D) for p=oc then

870, g) = L ()] v, 7L (f(x), g(x)))

(see Toffe and Levin [13, p.41] for the case where | < p<oc, and [13,
Sect. 6] for the special case of X = C(D)).
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14. B(l,g9), 1 <g<

Many of the results of this section are known. We include these results
for completeness and because we regard this work as at least partially a
survey. Let X be a norm on R™. We assume that for each fe Y,

f(x)=(/1(x), oo, [ (X)), xeD

the function ||f(x)||y, as a function of x, is v-integrable over D. (For
convenience we assume that v is o-finite.) We set

Iy =] 18 dvi)

With no additional assumptions we obtain (see, e.g., Rozema [31, p. 592])
the following analogue of Theorem 3.4.

THEOREM 14.1. Let U be a finite dimensional subspace of Y. Then u* is
a best approximant to f from U if and only if

- A @ a0 <] )l dvx) (141
D Z{f —u*) Z(f - u*)

for all ue U.

If X is smooth, then 7,(f,g)=1_(f g) for all f,g (f#0), and the
common value is given by the unique norm one linear functional on X
attaining its norm on f, applied to g. As such, we have:

PROPOSITION 14.2.  Assume X is smooth. Then w* is a best approximant
to f from the finite dimensional subspace U of Y if and only if

bur- wenolulx)) dv(x)| < jm MOl dv(x) - (14.2)

‘[D Zif—u*)

Sor all we U, where ¢ ¢_ ..., Is the unigue norm one linear functional on X
attaining its norm at (f —u*)(x). Equivalently to (14.2), we have that there
exist, for each x € Z(f —u*), ¢ . € X* of norm at most one such that

Bt —aoin (W) di(x) + | ¢ (u(x)) dv(x)=0 (14.3)

"D Zif -u*) Zif -~ u*)

for allue U.
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In the case under consideration, namely X =17, 1 <g<o, (142)
translates into

J T = uE )| 'sgn((/’ uXNx))u, (\)
Dt 10— )(\)|")1 ¢

<f (Z lu, ( \)|‘f> dv(x) (14.4)
Z(f u*)

i=1

for all ue U. Equation (14.3) may be restated as follows: There exists for
each xe Z(f —u*), a vector (¢, ( s &,,(x)) satisfying

(Z . (x)t‘/’) "<l

i=1

for all xe Z(f —u*) and such that °

o =)l sgn((f, - u)x)) w, (x)
7 dv(x
Py [JD At 71U, =) v
+f ¢i(-\')“/(-V)d"(-\’):|:0 (14.5)
Z(f u*)

for all we U. If the measure v is non-atomic, it is permissible to assume that

(Z |¢m|") .

i=1

for all xe Z(f—u*). In what follows we always assume that v is non-
atomic.
We restrict ourselves, in general for convenience only, to

Y, = (£ 1(x) = (/,(x), s £ (%)), x€ D},

q

where 1 < g < oc, and

m

Ly
ifly, = (n ( y (x)w) dv(x)
i i=1
(that is, the functions f are such that (X7, |f, (x)[¢)"“e L'(D, v)) and v is
a non-atomic o-finite measure.
This next result, analogous to Theorem 3.5, is a special case of a result
of Rozema [ 31, Theorem 2.11.

THEOREM 14.3.  Let U be a finite dimensional subspace of 'Y, where g
and v are as above. Then U is not a unicity space for Y,,.
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Proof. Choose any w*e U [0}. Let he L™ (D, v) satisfy

(1) |h(x)|=1all xeD

- [ fuX(x)[* "sgn(uX(x)) u; (x) h(x)

[Z1 YD Zu*) (Z,,”71 [U*(\ 1N )wv

Such an k exists because v is non-atomic and o-finite.
Set f(x)=h(x)u*(x), ie, fi{x)=h(x)u, (x) for i=1,..,m, xeD. Thus

fe Y, Z(f)= Z(u*), sgn(/; (x)) = h(x) sgn(u*(x)), and | f; (x)| = |u, (x)| for

all i=1, ..., m, and xe D. From (2),

(2) dv(x)=0 all uel.

< | (1 Usgn(fi (x) u; (x)
i1 "Dz Z;Ii‘llf(\ )
for all ue U. Thus from (14.4) we have that 0 is a best approximant to f

from U.
For |x| <1, Z(f—axu*)= Z(f), and

dvix)=0 (14.6)

[(fi— X)) " sgnl(f; — au*)x)) u; (x)
(X7 1 — o Wx) )
_ L sgn( £, (X)) u, (x)
(Z;'r:l \f, (X))

for each xe D. Substituting f— xu* in place of T in (14.6), we get from
(14.4) that xu* is a best approximant to f from U for all ja| < 1. §

As in previous sections, we restrict ourselves to D= K < RY, compact,
satisfying K =1int K, and measures u € .«/. By CY, we mean the restriction
of Y, to f=(f,,..,f,) such that fle C(K), i=1,..,m There is a
dependence on u which is to be understood. Under these assumptions we
have analogues of Theorems 3.6 and 3.7. We list one after the other and
prove them simultaneously.

THEOREM 14.4.  The finite dimensional subspace U of CY, is a unicity
space if and only if there does not exist an he L7 (K, u) and a u* e U\{0)
such that

(1) [hx)=1all xeK

(2) h(x) u,?"(x)e CK)i=1,..m

! Lol sgn(uX(x) u(x) h(x)
3 i=1 / 1’ ¥
S . S (ol i)
sJﬂ (i lu, (x)|* ) du(x)  all uel.
Zta*y \;j_y
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Given U as above, we define
U*={g:geCY, g(x)=h(x)ulx),uel, |h(x) =1, all xe K}

(analogous to the definition of U* in Theorem 3.7).

THEOREM 14.5 (Kroo [21, Theorem 1]). The finite dimensional
subspace U of CY, is a unicity space for CY , if and only if 0 is not a best
approximant from U to any ge U*\{0}.

Proof of Theorems 14.4 and 14.5. (a) Assume that U is not a unicity

space. Let feCY,, and u*eU\{0} be such that +u* are best

approximants of f from U. For cach xe K and ie {1, .., m!}

214 ol < U= w1+ uXNx) (14.7)

and thus

2] 1ig
2 ( RN (X)I">

i=1

m 1iy m liq
<(Z1v-unr) (S i) L as)

=1 i=1

Since

2 (2 1h00) dutx)

i=1

m Ly m Ly
= L‘ ( Z I(fi— u,*)(x)!") du(x) + J.K ( Z IS+ u,*)(x)]") du(x)

=1 i=1

it follows that equality holds in (14.7) and (14.8) for all xe K and
ie{l,..,m}. As such (1 <g <o), for each xe K, either (f;+uX)(x)=0,
i=1, .., m, or there exists a constant ¢(x) >0 such that

(fi = uX)x) = c(x)N(fi + uX)(x)),

i=1, .., m These two options translate into the existence of y(x) satisfying
ly(x)| <1, and

u¥(x)=y(x) f; (x), xekK, i=1,.,m. (14.9)

In particular, we obtain Z(f) = Z{u*) (which also follows from equality in
(14.7)). Since u¥, f;€ C(K) for each i, we also have that y is continuous on
K\Z(f).
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Set
g(x) = (sgn y(x}) u*(x).
From (14.9}),
g(x) = (sgn y(x}) u*(x) = (sgn y(x)) y(x) fxx) = ()| (

Thus ge CY,. From (14.9), y(x)#0 for xe K\Z(u*). Thus ge U* and
Z(g)=Z(u*), As is easily checked, for each xe K\Z(g) and i=1, .., m

1g, (x)¢ 'Sgn(g,(r)) If; ()¢ sgn(f; (x))

(7 g () (X 1L o1t

Since, by assumption, 0 is a best approximant to f from U, it now follows
from (14.4), for example, that 0 is a best approximant to g from U.

(b} Assume ge U*\ {0} and 0 is a best approximant to g from U.
Since ge U*\ {0}, we have

g(x)=h(x)u*(x),
where (1) and (2) of Theorem 14.4 hold for this 7 and u*. Now
Z(g)=Z(u*) and for xe K\Z(g) and ie {1, ..., m}
| g (x)|” 'Sgn(g.—(—‘c))zlu,-*(vr)l" 'sgn(uX(x)) h(x)
(X7 g, () (7w

Substituting this equality in (14.4) where we use the fact that 0 is a best
approximant to g from U, we obtain (3) of Theorem 14.4.

{c) Assume there exists an he L™ (K, u) and u*e U~ {0} satisfying
(1), (2), and (3) as in Theorem 14.4. From the method of proof of
Theorem 14.3, we have that f(x)=h(x)u*(x) is such that xu* is a best
approximant to f from U for all Ja| <1. From (2), fe CY, (fe U*). Thus
U is not a unicity space for CY,.
The above (a}), (b), and (¢) prove Theorems 14.4 and 14.5. |

The conditions of Theorems 14.4 and 14.5 are generally difficult to verify.
Let us consider some simpler examples.

ExampLE 1. There is one simple case where U is a unicity space for
CY, for every ge(l, ) and ue .o/, and that is when K\Z(u) is connected
for every ue U\ {0}. Such a situation may well occur if X is connected and
n<m. For then we may have Z(u) = J for every ue U\{0} (in this regard,
see Section 16). If K\Z(u) is connected for every ue U\{ }, then U*=U
and an application of Theorem 14.5 easily proves the unicity property.
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ExaMpPLE 2. dim U= 1. In this case where U = span{u*}, the conditions
{1), (2), and (3) of Theorem 14.4 reduce to the existence of he L™ (K, u)
satisfying

{1y |Ax)=tall xekK
(2) hMx)uX(x)eC(K), i=1,..m
(37 fa (7 X)) h(x) du(x) = 0.

ExaMpLE 3. Simultaneous Approximation. We assume that U is an
n-dimensional subspace of C(K) and

Ule=(u, .,u):uel}.

PROPOSITION 14.6. U is a unicity space for CY  if and only if Uisa
unicity space for C, (K, p).

We can prove this result using either Theorem 14.4 or 14.5. Note that
Theorem 14.5 essentially says that the unicity space property is checked by
verifying it on a set of “test functions,” namely the functions in U*. All
functions in U* inherit from U the property that their m components are
all the same. But for all such functions, their Y norm is just m'*“ times the
LY(K, ) norm of any component. Thus Proposition 14.6 holds.

ExaMpLE 4. Tensor Product. Assume U=U'@® --- @ U™ As a partial
result we have the following.

PropPosITION 14.7. If U’ is not a unicity space for C(K, pu} for some
jell, ...m}, then U is not a unicity space for CY,,.

Proof. Since U’ is not a unicity space, there exists a u*e U’% {0} and
an f,€ C(K) such that +u* are best approximants to f; from U’ in the
L'(K, ) norm. Set f=(0,..,0,/,,0,.,0), and u*=(0,..,0,u*0,..0)
Then u*e U'\ {0} and it is easily checked that +u* are best CY,
approximants to f from U. ||

As noted many times in this paper, conditions of the type found in
Theorems 14.4 and 14.5 are both difficult to verify and dependent on the
particular choice of the measure p e .o/. As such it is natural to try to find
conditions on the subspace U which guarantee that it is a unicity space for
all ge.«/. This condition we call Property A,,.

DeriNiTiON.  The finite dimensional subspace U of ('Y, is said to satisfy
Property A, if given any ge U*" {0} there exists a u* e U" {0} satisfying
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(1) u*=0 (Lebesgue) ae. on Z(g)
(2) 37 lg ()¢ 'sgn(g (x)uX(x)}=0 for all xeK and it is
strictly positive on a set of positive (Lebesgue) measure.

Remark.  For other related definitions of Property A, see Section 3.

THEOREM 14.8 (Kroo [21, Theorems 2 and 3]). The finite dimensional
subspace U of CY, is a unicity space for CY, for all measures pe .« if and
only if U satisfies Property A,

Remark. Krod in [21] proves the above result with any smooth strictly
convex space in place of /7. In fact, as noted by Kro0, one direction in the
proof uses the smoothness and the other direction the strict convexity.

Proof. (<) Assume U is not a unicity space for some pe.o/. From
Theorem 14.5 there exists a ge U*" {0} such that 0 is a best approximant
to g from U in the ¥, (i} norm. Thus, from (14.4)

S lg 0] Tsgn(g, (X)) u, (x)
YK Zig) (Z;nzl !g, (-\’)]q)lq(

(}: Iu,(x)l”> du(x)

i=1

du(x)

<|
Yz

for ali we U. Let u* be as given by Property A, satisfying (1) and (2) in the
definition thereof. From (1),

» " /g
‘ <z 114,-*(.\')1") du(x)=0.

© g} i=1

From (2),

R m )¢ ! *(x
[ Ihale o senle )at g

YK Zig) (7 lg; (X))

This is a contradiction,
(=) Assume Property A, does not hold. That is, there exists a
ge U*. [0} such that if ve U satisfies

(1'y v=0 (Lebesgue) a.e. on Z(g)
(2') 27 (g (x)“ sgn(g, (x}))v,(x)>0 for all xeK,

f=1
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then equality holds identically in (2'). Since ge U*, we have g=hu for
some h satisfying |[A(x)] =1 all xe K, and de U"{0}.
Set

brl =iu:ue U', u=0 a.e. on Z(g)}

U, is a linear subspace of U of dimension &, 1 <Ak <n (since e U,). Let
U,=span{u’, ., u*}.

From the above, if ve U, satisfies (2') then equality holds in (2'). Thus it
may be shown (see Pinkus [29, p. 61]) that there exists a measure pe.o/
(defined on K\ Z(g)) such that

g ()Y Usgnlg (x)) w, (x)
: du(x)=0
L’ Zig) (2',";1 ‘g,'(-‘f)‘q)l ¥ u
forallue U,.
Let
U,=span{u**', .., u"},

where U=span{u', .., n"}. Set

n

miw=| )(2 Im(x)l") dx

i=1

and

m Yig
nz(U)=meaz;<Z lll,(X)I") :

i=1

The subspace U, is “linearly independent over Z(g).” That is, if ue U,
is such that u=0 a.e. on Z(g), then u=0 on all K. Now n,(u) is a norm
on U,. From the above n,(u) is also a norm on U,. Since U, is finite
dimensional, this implies the existence of a ¢ >0 such that

n2(w) < ey (u)

for all ue U,.

Let i be as above, defined on K\Z(g), and u(K\Z(g))=m. Let jie o/ be
defined to be equal to u on K\Z(g) and to be mc times Lebesgue measure
on Z(g).
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Given ue U, we write u=u' +u? where u*e U, k=1, 2. Now,

”

f P18 G017 sgnlg, ()i (x) + ul
(S 1g, (<17

j 7ol ()Y sgn( g, (x)) ul(x)
K- Zi(g) (27':1 lg, (—‘f)‘q)"q’

Ly
<| (zw?(xw) du(x)
K28

P=1

x)) dﬁm[

du(x) '

<mn,(v*)

< emn(u?)

= (z |u?(x)|") * di(x)
Zig) \j=1

= (z lu, (an)‘ da(x).
Zig)

i=1

It therefore follows from (14.4) and Theorem 14.5 that U is not a unicity
space for CY, with respect to the measure jie.o/. |

We now turn to our three main examples to see conditions under which
they satisfy Property A .

ExaMmpLE |. dim U=1. It is easily seen that U =span{u*} satisfies
Property A, if and only if K\Z(u*) is connected.

ExaMPLE 2. Simultaneous Approximation. From Proposition 14.6 we
have that U satisfies Property A if and only if U satisfies Property A, i.e.,
U is a unicity space for C, (K, u) for all ue .o/

ExampLE 3. Tensor Product. Assume U=U'@® --- ® U™,
ProPOSITION 14.9. U satisfies Property A, if and only if each of
U', .., U™ satisfies Property A.

Proof. (=) This follows from Proposition 14.7.

(<) Assume each of U', .., U™ satisfy Property A. Let geU*,
g=1(g,, .. &n) If g,#0, then g,e (U')*. Thus there exists a u, € (U)*" {0}
satisfying

(') w;,=0ae on Z(g)
(2 g,u;z20o0n K

640 73-1-6
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(and since u;#0, strict inequality holds in (2} on a set of positive
Lebesgue measure). Set w= (u,, .., u,,). Then ue U {0} and u satisfies (1)
and (2) in the definition of Property A,. |

15. B(p, 1), 1 <p<x

D is a set and v a positive g-finite measure. For 1 < p<oc, we let Y,
denote the set of functions f=(f,, ... f,,) with norm

ufu,-,=(j (}: v ml) d\(r)".

As noted in Section 13, the dual space may be identified with B(p’, «c).
That is, the set of h= (A, .., 4,,) normed by

i, = J"D [ max jh (011 db(x))

Characterization of best approximants is readily attained from any of the
various results and techniques at our disposal.

THEOREM 15.1.  Let U be a finite dimensional subspace of Y ,. Then u* is
a best approximant to f from U if and only if

m n 1
ZJ (Z [(f,—u}) \)I) sgn((f; —u*)(x)) u; (x) dv(x)

i=1°P

j=1

P f (Z oy N) lu; ()| dv(x) (15.1)

i=1 7N ')

for all we U. Equivalently, we have that there exist h,e L™ (Z(f,—u¥*)),
i=1, .., m, satisfying |h;|, <1 and

o=% | (Zws—war)
NGt

i=1 =1

xsgn{(f; — uX)x)) u,(x) dv(x)

p-1
+f . (Z I(f; r)l) hf(-\')u,v(.\')d\'(.’c)} (15.2)
Z(fi- u')

j=1

Jor all ue U.
If, in addition, the measure v is non-atomic, then we may assume that in
(152) |h () =1 forall xe Z(f;—uX)and i=1, ., m
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In what follows we assume that v is a non-atomic finite measure on D.
We can then state a simple elegant criteria for unicity.

THFOREM 15.2. Let U bhe a finite dimensional subspace of Y,
(1 <p< ). Then U is a unicity space if and only if there does not exist a
u*e U\{0} and h=(h,, .., h,) (eY}) such that for all xe D

(1 ()= ali=1,..,.m,
(2) 27 hi(x)uX(x)=0.

i=1

Proof. (<) Assume U is not a unicity space for ¥,. Let fe Y, be such
that +u* are best approximants to f from U for some u*e U {0}. Now

21 QO =)L+ 1+ uX ) () (15.3)

for each / and x which implies

”» " i

2% LA Y = w0+ Y 1+ u* )]

i=1 i=1 i=1
and thus
200y, < If—u*lly + if+u*]), . (15.4)
But equality must hold in (15.4). Since L”(D, v) is a strictly convex norm,

we have that

n

S —uFx) = ¥ ((fi+u*Nx)l.  vae

i=1 i=1

for some constant ¢ >0 (or the right-hand side is identically zero). But
If —u*lly, = lif +u*|, >0.

Thus ¢=1.
From equality in (15.3), we obtain

| £ (x)| = luf¥(x)| vae.

for each i=1,..,m. (Thus Z(f) S Z(u¥) v ae, i=1,..,m.) As such, v ae.

Y fituXi)l =Y sgn(f; (X)) f, +u})x)
i=1 i=1
=Y 1fi(x)l+ Y sgn(f, (X)) uX(x).

i=1 i=1
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Thus we get

m

Z sgn(f; (x))uX(x)=0 va.e.
i=1
For each i, let h,e L™(D, v) be chosen such that |4, (x)] =1 for all xe D,
and #h,(x)=sgn f;(x) on D \Z(f), v ae. Since Z(f;)< Z(u¥), v ae., it
follows that we can choose £, so that (2) also holds.
(=) Assume there exist h and u*e ' {0} satisfying (1) and (2). Since
v 18 a non-atomic finite measure and U is a finite dimensional subspace
there exists an ¢e L* (D, v) satisfying
(a) J|e(x)|=1all xeD
I G20y QuXD” (0 b (x) u, (x)) e(x) dv(x) =0 for all

i=1
ne U

Set f=(f,, ... f,,) where
Ji(x)=¢e(x) h; (x) |k (x), xeD,i=1,..,m

For |a| < 1, we have from (2) and since | [, (x)| = |uX(x)],

m m

S0, = a0 = Y Lol = 2e0e) by (x) u#(x)]
j=1 j=1

=3 JuXx)| —ae(x) Y h(x)uX(x)
=Y luXx)l.

J=1

In addition,
sgn((f, —auX)(x))=e(x) b, (x)

on D\Z(u}).

Substituting in (15.2), where the A, (x) therein is taken to be the
&(x) h, (x) as above, it follows that zu* is a best Y, approximant to f from
Uforevery o] <1. |}

Remark. Conditions (1) and (2) of Theorem 15.2 are independent of
pe (1, ov) and the particular measure v. This is not surprising. The lack of
unicity is a consequence of the /7 norm and not the L7(D, v) norm. A
reading of the proof shows that this result can be proved for more general
norms rather than L”(D, v}). Note also that if m =1 there is, of course,
nothing to prove as Y, is then L”(D, v).
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In the case of simultaneous approximation, it is easily seen from
Theorem 15.2 that U is a unicity space if and only if m is odd.

If we restrict our attention to the set of continuous functions and consider
the unicity problem restricted to this set {(as we have done in previous
sections), then the conditions for a unicity space become more complicated.
However, such conditions can be given.

Finally we note that in place of the Y, norm as defined herein, we could
have considered the norm

(] (Z w @ 1s1) @)

i=1

where the w,; are some suitable positive functions (weights). In this case
Theorem 15.2 holds, but condition (2) thereof is replaced by

m

(29 Y h()w (x)uX(x)=0

i=1

for all xe D. Obviously U is a unicity space in the Y,{(w) norm for every
such w if for each ue U, on a set of positive v measure, the cardinality of
the set

litu; (x)£0}

is exactly 1. Whether this condition is also necessary in order that U be a
unicity space in the Y,(w) norm for all w seems to depend on a more
explicit definition of the admissible w.

16. B(x,q), 1 <g<xc

We let D be a compact Hausdoff space and C(D}) denote the space of
continuous real-valued functions defined on D. We set

ﬂ\) = (fl (.\‘), ey ./;n (X))»

where each f,e C(D). We norm f by

£}y = max [f(x)] y,
xeh

where X is any norm on R”. In this section we review results first obtained
by Zuhovitsky and Stechkin [36]. Firstly, however, we present a
characterization of best approximants (based on results to be found in
Singer [33]).
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THEOREM 16.1. Let U be an n-dimensional subspace of Y. Then u* is a
best approximant to £ from U if and only if for some k, 1 <k <n+1, there
exist points {x,\X_, in D, positive numbers {i,}%_ |, and extremal points

{h}%_ | of the unit bal of X*, such that

(1) X4, 37 A hlu(x)=0,allueU

=1 i

(2) X R —udix) =T —u) (e = If—u*[y, j=1, .. k

i=1
Remark. W X =17, 1 <q<o, then

[(f,—uX)x )Y " sgn((f, — uX)x;))
I —u*)x)ne !

J—
hi=

for each 7 and j. In this case we can substitute this 4/ in (1), deleting the
denominator, and replace (2) by

(2} [(E=w* ), =if—u*f,,  j=1 .k
In what follows we need the following notation. We recall that

Z(g)={x:glx)=0}.

By |Z(g)l we mean the cardinality of the set Z(g). i.e., the number of
distinct zeros of g(x) (in D).

Assuming X is strictly convex, we have the following generalization of
Haar’s Theorem (Theorem 3.3).

THEOREM 16.2. Assume X is a strictly convex norm on R™. The
n-dimensional subspace U of 'Y is a unicity space if and only if
(@) |Z(u)| <nim for allue U\ {0}

(b) if k= [n/m], then for every choice of x,, ..., X, (distinct) in D, and
!, .., " € R”, there exists a we U satisfying u(x;) =o', j=1, ., k.

Remark. 1t is to be understood that if »n < m, then (b) is empty.
Remark. A “special case” of this theorem where m = oc is Theorem 7.3.

Proof. (=) If (a) does not hold, then there exists a u*e U\ {0} and
X, ..., Xz (distinct points in D) with k > n/m, such that

Set

V= (), ooy U (X0 coes (X )y s 4, (X)) tue UL
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Note that ¥ is a subspace of R™. Furthermore, since u*|, =0, we have

dim V<n—1<mk,

ie., V does not span R™.
Now assume n2m and (b) does not hold. Then there exist points
X1+ Xgy k= [n/m], such that

Vo= (X)) o U (X )y ey 1y (X ) oo 1, (X)) swE U,
does not span R™*,
Thus in both cases we have that the V as above does not span R™*.
Given any norm on R™ there will therefore exist some non-zero vector

with the zero vector as a best approximant to it from V. As such there
exists an he R"* {0}, which for convenicnce we write as

h= (A (x1), o 2, (X N ooy B, s B (X
such that

miP 1a\x Hh(.\",)—u(x,)H_\-:}Zn}axk thix )l y. (16.1)

uel j=1...%k

where we understand that
hix,)=(h (X)), . A, (X))
Normalize h so that

maxk Ix My =1 (16.2)

=1 ..

Construct ge Y, ie., g(x)=(g,(x), .., £.(x)), g, e C(D), i=1, .., m, such
that

and |g(x)| y<1forall xe D, ie., |ig],= 1. Such a construction is possible.
We now choose u* e U {0} satisfying u*(x,)=0, j=1, .., k. If (a) holds,
then its existence is guaranteed by definition. If n > m and (b) holds, then
since dim V<mk <n=dim U, there must also exist such a un* We
normalize u* so that u*}, = 1.
Set

f(x)=g(x)[1 — flu*(x)] 4 1.
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Note that fe Y. Since 0 <1 — |ju*(x)]|y <1 and
f(x;)=g(x,)=h(x,), J=1, .k, (16.3)

we have |f] ,=1.
For any ue U we have from (16.1), (16.2), and (16.3),

I —uj, = max =)o)l

= /P}ax It —w)(x )y

\V

 max Th(x )y

Furthermore, for |«| <1 and each xe D,
H(F — au* ) o < )y + o] [u* (o)l
= lg()l v [T = flo*(x)l x 1+ laf u* (),
< [ = flo* )l + Lo flu* ()l
<1
Thus

If—ou*, <1,

and xu* is a best approximant to f from U for all |a| < 1. U is not a unicity

space for Y.
(<) We present, for variety, two different proofs of this direction. We

assume that (a) and (b) holds.

(I) Assume U is not a unicity space for Y. Let fe ¥, |f], =1, and
*e U {0} be such that +u* are best approximants to f from U. Set

J={x ) = e, =11,
For any xeJ,
2 () = I —w*) )y + HE+u*) )]y
Since X is strictly convex, this implies that for each such x,
u*(x)=0.

Since J is not empty, this immediately implies, if # <m, that (a) does not
hold. Thus we may now assume that n>m.
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If J contains k = n/m points, then (a) does not hold. As such we assume
that {x,, .., x,} =J, and 1 <k < n/m. Now there exist vectors d', ..., d* e R™
and ¢, >0, such that

If(x)—ed Iy <lf(x)e=1.  j=1,..k
for all 0 <& <¢,. Since (b) holds, there exists a fie U satisfying
i(x;)=d’, j=1,.,k
By continuity, there is an open neighborhood of each x; such that

(f—e)(x)|l x <1

on this neighborhood for each ee(0,¢&,). On the closed (compact)
complement of this finite union of neighborhoods,

iy <l—n
for some n > 0. Thus for ¢ > 0, sufficiently small,
I —ed)(x)]x <1
for all xe D. That is,
If—en|, <1

which contradicts our assumption that 0 is a best approximant to f.

(IT) As above, we assume that U is not a unicity space for Y, fe Y,
and +u*e U\ [0} are best approximants to f from U.
We let J be as defined, i.e.,

J={x 6] = Il )

Since 0 is a best approximant to f from U, we have from Theorem 16.1 the
existence of {x,, .., x,}SJ, 1 <k<n+1, positive numbers {),,}’;f:,, and
extremal points {h,}f:, of the unit ball of X*, such that (1) and {2) of
Theorem 16.1 hold. As in (I), we may assume that 1 <k <n/m (for

otherwise we contradict (a)). From (b}, there exists a G e U satisfying
dx)=h’, =1,k

Substituting @ in (1) of Theorem 16.1, we get

nt

k
YOy A (k) =0.

f=1i=1
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But since 4,>0 and the h’ are not identically zero, we obtain a
contradiction. |

Remark. 1 X is not a strictly convex norm on R™ then the second part
of the proof of Theorem 16.2 need not hold. However, the first part does
not depend on this fact. In other words, if U is 4 unicity space, we must
have (a) and (b), where X is any norm on R".

Remark. 1If n/m is an integer, then (a) and (b) are equivalent. This easily
follows from the fact that for k =n/m, both (a) and (b) are equivalent to
the fact that the V in the proof of Theorem 16.2 spans R,

We now consider our standard three examples.

ExaMPLE 1. dim U= 1. In this case where U =span{u*} we have that
the unicity space property is equivalent to Z(u*)= (J. That is, for each
xe D there exists a je {1, ... m} such that u*(x)#0.

ExaMmpPLE 2. Tensor Product. Assume U=U'@® ---@ U™ Letk = [n/m].
Thus n=km+r, where 0 <r<m.

PROPOSITION 16.3. U, as above, is a unicity space for Y if and only if r
of the U', .., U" are Haar spaces of dimension k41, and m—r of the
U', .., U™ are Haar spaces of dimension k.

Proof. 1t is easily seen that (a) and (b) hold for U if and only if for each

e 1
iel{l, ..,m},

(@) | Z(u)| <n/mfor all u,e U {0}

(b’} if k=[n/m], then for every choice of x, .., x, (distinct) in D,
and a,‘, x’," € R, there exists a w;e U’ satisfying u; (x))=af, j=1,.. k

If r=0, ie, n=km, then (a’) and (b") are equivalent. For (a’) to hold
it is necessary that each U’ be a subspace of dimension at most &, and if
U’ is a subspace of dimension k, then it must be a Haar space. Since
n=3"_, dim U’, the above implies that each U’ must be a Haar space of
dimension £. And in the opposite direction, if each U’ is a Haar space of
dimension k, then (a’) and (b') hold.

Assume 1 <r<m. For (a’) to hold, it is necessary that each U’ be a
subspace of dimension at most & + 1, and if U’ is a subspace of dimension
k + 1, then it must be a Haar space. For (b} to hold, it is necessary that
each U’ be a subspace of dimension at least &, and if U’ is a subspace of
dimension ., then it must be a Haar space. These facts together imply that
each U'is a Haar space of dimension k or k + 1. Furthermore, if this is the
case, then (a’) and (b’) necessarily hold. [
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ExampLE 3. Simultaneous Approximation. Let U be an n-dimensional
subspace of C(D), and

U= =) e D}

Assume m =2 and n>=2. Then U cannot be a unicity space for Y. This
follows from the fact that (a) cannot hold. That is, there exists a ue U, {0}
with at least n — 1 zeros in D. Thus |Z(u)|=Zn—1=n/m.

17. B(p, w), l<p<ou

For convenience, we let D be a compact Hausdorff set, and C(D}) the
space of continuous real-valued functions defined on D. We set

f(x) = (/I (-Y)9 s} j‘m(x))w

where each f,e C(D), and define the norm Y, on this space by

- » 1:p
Il "":(Jn [I:rr'lé_x i lf,»(x)tJ d\‘(x)) ,

where v i1s some finite, positive measure. In this section we assume
| < p< a. Concerning best approximation in this norm, very little is
known. We do have, as a consequence of Theorem 2.3:

ProPOSITION 17.1.  Let U be a linear subspace of Y,. Then w* is a best
approximant to f from U if and only if

~ po 1
| [max I(,f}—u,*)(x)l]
pli=1.m

x max [sgn((f,—uX)(x))u, (x)]dv(x)=0

je Atxy
Jor all we U, where

A(x)={j(fi—uHx) = max ((fi—uX)(x) ]

The space B(p, «c) has a similar form to the space A(p, o¢). As a
parallel to Proposition 8.2 we have:

ProrosITiON 172 Let U be a finite dimensional subspace of Y,
l < p< . Assume that for each we U\{0} there exists some xe D for

which u, (x)#0, i=1,..,m. Then U is q unicity space for Y ,.
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Proof. Assume U is not a unicity space. Let fe Y and u*e U {0} be
such that +u* are best approximants to f from U. Now since

£l ¥ [If +u*| Voo
it follows from the strict convexity of the L”-norm that

max |f(x)|= max ((fi—uf)(x)|= max [(fi+uF)x)|

P=1...n .o

for all xe D. Let

For jeJ(x), we have uf(x)=0. Thus for each xe D there exists a j
(depending on x) such that #*(x)=0. A contradiction. ||

One immediate application of the above proposition is the fact that in
the problem of Simultaneous Approximation, every U is a unicity space
for v,.

If U=span{u*}, ie., dim U= 1, then the condition given in the above
Proposition 17.2 is both necessary and sufficient. This is not difficult to
prove. Assume that given each xe D there exists an i (dependent on x)
such that u*(x)=0. Normalize u* so that |[u*(x)|<1/2for all i=1, ... m
and xe D. Set f,(x)=1—|uX(x)|, i=1, .., m Thus, by assumption,

max |f,(x)| =1
i=1 .om

for all xe D. It now follows that xu* are best approximants to f from U
for all Ja] < 1.

Unfortunately, while the condition given in Proposition 17.2 is sufficient
to ensure that U is a unicity space, it is not necessary. As an example, let
D be any connected set, and

U=span{u', u’}

where u'(x)=(1, 1, ), and u’(x)= (1,0, —1). {That is, each component of
u'(x) and u’(x) is a constant function.) U does not satisfy the condition
given in Proposition 17.2. Now, if U is not a unicity space then there exists
an f and u* e U\{0} as in the proof of Proposition 17.2. By the argument
therein, for each xe D, uf(x)=0 for some je {1,2,3}. However, U is of
such a form that in this case u*(x) =0 for all xe D, and «*(x)#0 for i # j
and every x e D. Since u}(x)=0 for all /e J(x) where

3

Jx)={j:1/; (%)l = max |, (x)] 2
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it follows that | f; (x)| > |/, (x)|, i#j, and all xe D. Since D is connected,
we have in addition that f, is of one strict sign on all of D. Thus, for some
¢, sufficiently small, and of the sign of f;,

f—eu' v, <Ifly,

for each pe[1, oc]. Thus U is a unicity space.

18. B(1, )

We assume that D is a compact Hausdorff space and C(D) the space of
continuous real-valued functions defined on D. We set

f(Y) = (f] (x )* seey ,fm('\’))s
where fe C(D), i=1, .., m. We define the norm Y on this space by

lwy=L[;p5¢ﬁun}mux

where p is some finite, positive measure. There is very little known about
this space. As an application of Theorem 14.1, we have:

PrROPOSITION 18.1. Let U be a finite dimensional subspace of Y. Then u*
is a best approximant to § from U if and only if

- [ max sgn((f;~u*)x,)) u; (x)] du(x)

D Z(f -u*y J€AlX)
<[ i, datx
Z(f—u*)

for all we U, where

A= I —uk)x) = max |(fi—uf)x)l}

and
la(x)., = n?ax [, (x)].

i=1I....m

Unfortunately little seems to be known about characterizing unicity
spaces in this norm. We can show, paralleling one half of Theorem 14.5,
that if U is a unicity space for Y, then 0 cannot be a best approximant from
U to any ge U*\{0}. However, there is no reason to suppose that the
converse is valid, and as such the result loses much of its relevence.
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19. B{oc, 1)

We assume that D is a compact Hausdor{l space and C(D) the space of
continuous real-valued functions defined on D. We set

flx)= (/i (x), s £ (X)),

where f,e C(D), i=1, .., m. We define the norm Y on this space by

"

)y =max 3 |f; (x)I.
ve D =1

As an application of Theorem 16.1, we have the following characterization
of best approximants.

THEOREM 19.1.  Let U be an n-dimensional subspace of Y. Then w* is a
best approximant to £ from U if and only if for some k, | <k <n+ 1, there
exist positive numbers {}t)}f: s el =LY, i= L m j=1.,k and

ints ¥k :
points {x;17_ | in A, where

A= {x Sy fi—uEx)) = |If—u*| ;},

i=1

satisfying
(1) e;=sgn((fi—u*Nx)} if (f;—uX)x;)#0
(2) X X A eu(x)=0

for allueU.

From the Remark immediately after Theorem 16.2, we have that if U is
a unictty space for Y, then (a) and (b) of Theorem 16.2 must hold. From
this fact it follows, as in Example 3 of Section 16, that in the problem of
Simultaneous Approximation for m>2, n>2, U is not a unicity space for
Y. However, conditions (a) and (b) are not in general sufficient to
guarantee that U be a unicity space. This we note as a consequence of this
next result.

ProposiTiON 19.2. If U is not a unicity space, then there exisis a
u e U\{0}, x*eD, and g;e { — 1,1}, i=1, .., m, such that
L

Y e uX(x*)=0. (19.1)

i=1
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Furthermore if dim U=1 (U =span{u*}), then the existence of such an x*
and {¢;} implies that U is not a unicity space.

Proof. Assume U is not a unicity space. Let fe ¥ and u*e U {0} be
such that +u* are best approximants to f from U. A simple calculation
shows that if

m

Ity =3 1f: (x*)

i=1
then

2070 = —u WP N + 1+ uX )] (19.2)

fori=1, .., m, and

”m

Iftu*ly =3 102 uX)®)l.

i=1
From (19.2),

Lf: (x*)] = JuX(x*)|, i=1,.,m.

Set ¢, =sgn(f; (x*))if £, (x*)#0. If £, (x*)=0, then u*(x*)=0 and ¢, may
be arbitrarily chosen in { —1,1}. Now

1 "

Yoefx*)y =3 1) =l =Tt u*],

i=1 i=1

m n

=3 it uX)a*)) = Z e, (f, 2 ul)(x*)

i=1 i=1

”n L

=Y & filx*) £ Y g ur(x*).

i=1 =1

Thus

> e uX(x*)=0.

=1

It remains to prove the latter half of the proposition. Assume
U=span{u*}, and (19.1) holds. Set

Silx)=¢ [c—]uP(x) —uX(x*)],
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where ¢ >3 |lu, ||, for all i (see the proof of Proposition 10.3). Note that for
any ve D

/i< Ifi (x*)f=¢,

for each i=1, ..., m. Thus

”

Il y= 2 Ifi (x*)] (=me).

i=1

Applying Theorem 19.1 with k=1 (condition (2) therein is given by
(19.1)), we have that 0 is a best approximant to f from U. Now
g (fi—uX}xy=0 for each xeD and i=1,.,m since ¢>3 |yl .
Furthermore,
((fi—uX N =c— (X (x) —uM(x*) —eut(x)

Se—cguX(x*)

=&, fi (x*)— g, uX(x*)

=1(fi —uF)x*)].
Thus,

" "

2 = u )l = Yoe (fimur)x*)

i=1

If—u*|,

I

"t 2

Yoafix®) =) 1L )=y,

i= | i=1

Il

and u* is also a best approximant to f. [
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